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Abstract

In traditional active learning, learning algorithms (or learners) mainly focus on the perfor-
mance of the final model built and the total number of queries needed for learning a good
model. However, in many real-world applications, active learners have to focus on the learning
process for achieving finer goals, such as minimizing the number of mistakes in predicting
unlabeled examples. These learning goals are common and important in real-world applica-
tions. For example, in direct marketing, a sales agent (learner) has to focus on the process of
selecting customers to approach, and tries to make correct predictions (i.e., fewer mistakes) on
the customers who will buy the product.

However, traditional active learning algorithms cannot achieve the finer learning goals due
to the different focuses. In this thesis, we study how to control the learning process in active
learning such that those goals can be accomplished. According to various learning tasks and
goals, we address four new active paradigms as follows.

The first paradigm is learning actively and conservatively. Under this paradigm, the learner
actively selects and predicts the most certain example (thus, conservatively) iteratively during
the learning process. The goal of this paradigm is to minimize the number of mistakes in
predicting unlabeled examples during active learning. Intuitively the conservative strategy is
less likely to make mistakes, i.e., more likely to achieve the learning goal. We apply this new
learning strategy in an educational software, as well as direct marketing.

The second paradigm is learning actively and aggressively. Under this paradigm, unlabeled
examples and multiple oracles are available. The learner actively selects the best multiple
oracles to label the most uncertain example (thus, aggressively) iteratively during the learning
process. The learning goal is to learn a good model with guaranteed label quality.

The third paradigm is learning actively with conservative-aggressive tradeoff. Under this
learning paradigm, firstly, unlabeled examples are available and learners are allowed to select
examples actively to learn. Secondly, to obtain the labels, two actions can be considered:
querying oracles and making predictions. Lastly, cost has to be paid for querying oracles or for
making wrong predictions. The tradeoff between the two actions is necessary for achieving
the learning goal: minimizing the total cost for obtaining the labels.

The last paradigm is learning actively with minimal/maximal effort. Under this paradigm,
the labels of the examples are all provided and learners are allowed to select examples actively
to learn. The learning goal is to control the learning process by selecting examples actively
such that the learning can be accomplished with minimal effort or a good model can be built
fast with maximal effort.

For each of the four learning paradigms, we propose effective learning algorithms accord-
ingly and demonstrate empirically that related learning problems in real applications can be
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solved well and the learning goals can be accomplished.
In summary, this thesis focuses on controlling the learning process to achieve fine goals

in active learning. According to various real application tasks, we propose four novel learning
paradigms, and for each paradigm we propose efficient learning algorithms to solve the learning
problems. The experimental results show that our learning algorithms outperform other state-
of-the-art learning algorithms.
Keywords: active learning, learning process, minimizing the number of mistakes, guaranteed
label quality, labeling cost, learning effort
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Chapter 1

Introduction

In this chapter, we will review some basics of machine learning, supervised learning and tra-
ditional active learning first. Then we will state briefly the limitations of the traditional active
learning paradigms, and present an overview of our new paradigms of active learning and the
contributions of this thesis.

1.1 Machine Learning
Ever since computers were invented, they have been applied to a wide range of tasks by de-
signing and implementing necessary softwares [19, 18]. However, there are many tasks that
are difficult or impossible to fulfil by simply programming, as programmers may not be able
to anticipate all possible situations and all changes over time or even have no idea on how to
program the solution [19, 77]. For example, in speech recognition, it is impossible to map each
pronunciation to a word correctly by programming, as the pronunciation of one word varies
due to different accents which programmers cannot anticipate. As another example, in detect-
ing credit card fraud, even programmers cannot recognize who is a fraud, thus it is impossible
to detect fraud by programming.

Naturally experts have been thinking that if computers can be programmed to learn auto-
matically with experience, i.e., making machine learn by itself, the impact would be dramatic.
The informal definition of learning given by Tom Mitchell [59] is as follows:

A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as mea-
sured by P, improves with experience E.

According to the definition, machine learning is to program computers to learn general
models from a set of particular examples and optimize their performances.

Generally speaking, the machine learning process has two phases, learning and predict-
ing, as shown in Figure 1.1. Machine learning researches usually focus on the first phase of
learning. As data may be incomplete or come from multiple sources [30], the first step in the
phase of learning is preprocessing data, and which is then followed by learning from the data
and evaluating the performances of the learned model. In this thesis, we assume that data have

1
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Figure 1.1: Machine learning process.

been preprocessed and we focus on the learning and evaluating steps. The second phase of
machine learning is to apply the model learned in the first phase to predicting new data.

Machine learning is clearly meaningful and important, as data are cheap and abundant (data
warehouses, data marts), while knowledge (models) is expensive and scarce [11]. According
to the important applications on various tasks, machine learning algorithms can be grouped
into different types, such as supervised learning, semi-supervised learning, unsupervised learn-
ing and reinforcement learning and so on. Among them, supervised learning is an important
research area and is useful for numerous applications [48].

1.2 Supervised Learning
Supervised learning is the process of constructing a set of rules, or more generally speaking,
creating a model, from examples having both attributes and labels (nominal or numeric). The
rules or model is required to achieve minimum error on predicting the labels for future exam-
ples drawn independently from the identical distribution (minimum generalization error).

Supervised learning can be illustrated simply with a small set of examples in Table 1.1. The
examples have four attributes (outlook, temperature, humidity and windy) and one label (play
= yes or play = no). We can build a model with a classical supervised learning algorithm C4.5
[70](see Figure 1.2 for the model).

The decision tree model in Figure 1.2 can be interpreted with a set of rules as follows.

If outlook = sunny and humidity = high then play = no;
If outlook = sunny and humidity = normal then play = yes;
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Table 1.1: A small dataset - weather
outlook temperature humidity windy play
sunny hot high FALSE no
sunny hot high TRUE no

overcast hot high FALSE yes
rainy mild high FALSE yes
rainy cool normal FALSE yes
rainy cool normal TRUE no

overcast cool normal TRUE yes
sunny mild high FALSE no
sunny cool normal FALSE yes
rainy mild normal FALSE yes
sunny mild normal TRUE yes

overcast mild high TRUE yes
overcast hot normal FALSE yes

rainy mild high TRUE no

outlook

humidity outlook

No Yes 

Yes 

No Yes 

sunny 
overcast rainy 

high normal true false 

 
Figure 1.2: One supervised learning model built on the weather data.

If outlook = overcast then play = yes;
If outlook = rainy and windy = true then play = no;
If outlook = rainy and windy = false then play = no.

These rules are meant to be explained in order: the first rule, then if it does not apply then
the second, and so on. With the rules, we can predict the label (play = yes or no) for a future
example. For instance, given an example, outlook = rainy, temperature = normal, humidity =
high and windy = true, we will predict its label as play = no.

In the above toy example, we choose to build a decision tree model due to its interpretabil-
ity. Some other supervised learning algorithms, such as naive Bayes [29], support vector ma-
chine (SVM) [98] and neural network [40], can also be applied. Different learning algorithms
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have different properties and are suitable for different types of problems. However, in this the-
sis, we only focus on different learning paradigms and any supervised learning algorithms can
easily be used.

1.3 Active Learning

Traditional supervised learning algorithms have been widely and successfully used in many
real applications, such as speech recognition, loan applications, webpage categorization and so
on [59, 42, 69]. However, to construct a good model, a considerably large amount of labeled
data is usually required, which may be difficult to obtain in real applications. For example,
in webpage categorization, each webpage in the training set has to be tagged with certain
labels, such as economics, politics, entertainment and so on. This tedious work is usually done
manually, and costs a considerable amount of time, human resource and money. Under this
circumstance, active learning has been proposed and studied in the past decades.

In active learning, unlabeled examples are assumed to be easily available such as the web-
pages on Internet; while the labels of the examples can only be obtained by paying certain cost,
such as by paying an expert to label them. Obviously, we can reduce the cost by minimizing
the number of examples to be labeled. Instead of obtaining a complete training data passively
by traditional supervised learning, active learning selectively obtains the labels of the examples
that are most informative for the current model. In this way the final model may be built with
fewer labeled examples. Accordingly the cost for labeling examples can be reduced.

Particularly, in active learning, a learner is usually provided with a small (or even empty)
set of training examples, and a model is built accordingly. Then the learner selects the most
informative example to query an oracle (an expert) for its label and adds the new labeled ex-
ample to the training data. By repeating the building-and-querying process, the training set
is expanded gradually with informative examples, and the model built from them can be im-
proved quickly (i.e., the generalization error on future examples reduces quickly) compared to
the “passive” learning. Consequently the number of labeled examples is reduced, and so isthe
labeling cost.

Active learning has been widely and successfully applied to many real applications. In the
following subsections, we will introduce the commonly used scenarios, query strategies and
variants of active learning.

1.3.1 Active Learning Scenarios

Different scenarios have been considered in the active learning research. Two of them are well-
studied. One is membership query synthesis [1], and the other one is pool-based sampling
[54].

Under the membership query synthesis scenario, usually only a small set of labeled ex-
amples is given. Unlabeled examples are all generated synthetically from input space. This
scenario is mainly used for theoretical research in active learning. For some real applications,
synthetic queries may cause unexpected problems. For example, in handwritten recognition,
synthetic symbols for query may not be recognizable and have no meanings.
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Figure 1.3: Active learning process. The numbers (1-7) indicate the workflow of active learn-
ing.

Under the pool-based sampling scenario, in addition to a small (or even empty) set of
labeled examples, a large set of unlabeled examples (called “pool”) is given. Usually the
unlabeled examples in the pool are assumed to be collected for free or cheaply, such as the
webpages and images from Internet. The active learning algorithms select the most informative
example from the pool to query an oracle for its label, and update the current model with all
the labeled examples. In this way, a good model is expected to be built with fewer labeled
examples. In this thesis, the research is under the pool-based active learning scenario, as it is
for solving the problems in real-world applications.

In addition to the two scenarios, stream-based selective sampling [14] is also studied in the
active learning research. In stream-based selective sampling, unlabeled examples are coming
from real data stream (instead of a set of unlabeled examples (“pool”) in pool-based sampling).
Each unlabeled example can be observed only for once, and learning algorithms have to decide
whether to query it or not based on its informativeness.

1.3.2 Active Learning Query Strategies
As mentioned, to reduce the labeled examples needed, active learning algorithms under the
pool-based sampling scenario usually select the most informative example from the pool of
unlabeled examples to query. How can we evaluate the informativeness of each unlabeled ex-
ample? Many approaches have been proposed for the evaluation, and here we focus on review-
ing three commonly used approaches including uncertain sampling, expected error reduction
and density-weighted method.

Uncertain sampling [54] is the simplest and most commonly used query strategy. It selects
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the example that is predicted by the current model with the lowest confidence to query an oracle
for its label. For a binary classification problem, uncertain sampling selects the example with
predictive probability closest to 0.5. The rationale is straightforward: if the current model can
predict the example well, then the example does not have much information to improve the
model; otherwise, the example is expected to improve the current model effectively.

Expected error reduction is proposed in [76], and it directly focuses on reducing the gener-
alization error of the model being built. More specifically, for each unlabeled example xi in a
given pool, the learning algorithm estimates its label and builds a model over the combination
of xi and the training examples. Among them, the example that minimizes the generalization
error is selected to query an oracle for its label.

The density-weighted method is proposed by Settles and Craven [85]. The rationale behind
this method is that, to reduce the generalization error on the entire example space, the examples
from the high density space should be predicted with less error rate. Thus, the unlabeled
examples from the high density example space should take precedence over other examples to
be queried for labels.

1.3.3 Variants of Active Learning
The query strategies mentioned are to select the most informative example to label such that
a good model can be built with fewer labeled examples. The success of the strategies are
usually subject to certain assumptions, such as noise-free labels given by an oracle, evenly
distributed labeling cost and so on. For solving the learning problems in real applications,
different variants, such as active learning with noisy oracles and active learning with variable
labeling cost, have been proposed by recent works.

Active learning with noisy oracles is proposed due to the fact that in real applications, noisy
labels are ubiquitous. Noise can be introduced to labels by oracles in different ways, such as
inaccurate instruments in empirical experiments, distraction or fatigue of experts and so on
[83]. The noisy labels affect the active learning performances badly as usually active learning
algorithms are noise-prone [3, 97]. To reduce the negative effects, different types of learning
strategies have been proposed. One type is focusing on how to select the example that is more
informative and less likely to be noisy [3, 25]. The other type is to get rid of the noise in labels
by querying multiple oracles [82, 90, 22]. However, label quality still cannot be guaranteed in
the previous works. In this thesis, we will study how to remove the noise and guarantee label
quality in Chapter 3 with multiple oracles.

Active learning with variable labeling cost tries to solve the problems that the labeling cost
is example-dependent or oracle-dependent. For example-dependent labeling cost, two groups
of active learning strategies have been proposed. One is that the labeling cost is known before
selecting the examples (e.g., [46, 47]). The other group is to handle the problem that the costs
for labeling examples are variable and unknown [86]. For oracle-dependent labeling cost,
learning strategies have been proposed in [110, 21] to select low-cost combinations of oracles
that result in high-accuracy labels of examples. As a result, the total cost in building a good
model can be minimized.

More variants of active learning, such as batch-model active learning [13, 44], multi-task
active learning [74, 109] and active learning with generalized query [24, 26], have also been
proposed. In addition, active learning strategies have also been successfully applied to other
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machine learning researches, such as active clustering [43, 7], active transfer learning [91],
active feature acquisition and classification [58, 78], active class selection [55] and so on.

1.3.4 Limitations of Traditional Active Learning Paradigms

Active learning has been fairly well-established in theoretical research and various real-world
applications. Most of the active learning research has concluded with encouraging results that
the number of queries can be reduced by querying oracles actively (e.g., [81, 54, 32, 41]).
However, some previous works [80, 39, 86, 4] also show the limitations of active learning on
some circumstances, such as alternative query types and so on. This may be due to the many
simplified assumptions in previous works [81]. In this thesis we address two types of new and
different limitations.

The first limitation is that most traditional active learning paradigms only focus on the num-
ber of examples labeled (queries issued) and the prediction accuracy of the final model built.
However, they do not study learner’s performances during the learning process which in fact is
very important. For example, in directed marketing (a process of identifying likely buyers to
market products actively), sales agents need to select and approach the “right” customer (the
customer who will buy the products). Obviously its final goal is to make fewest mistakes dur-
ing the selection (learning) process, rather than the high prediction accuracy of the final model
as in traditional active learning (See Chapter 2 for further discussion). As another example,
human often prefers taking minimal effort during the process of learning new knowledge. It
is also crucial to minimize the machine learning effort during the learning process as effort is
related to energy consumption, system reliability and so on (See Chapter 5 for further discus-
sion). The traditional active learning does not study those goals in the process of learning, as
we do in this thesis.

The other limitation is that the label quality in active learning cannot be guaranteed. Most
traditional active learning paradigms assume that oracles are always correct. However, noise
can be introduced to labels in different ways as mentioned in Section 1.3.3. To rule out the
negative effects of the noisy labels, multiple imperfect oracles are used in previous works
[82, 90, 22]. By querying multiple oracles for each example, the final label obtained is expected
to be more accurate. This multiple-oracle strategy is reasonable and useful in improving label
quality. However, there is still no way to guarantee the label quality. We will propose a novel
learning paradigm in Chapter 3 to overcome the limitation.

1.4 New Paradigms of Active Learning: an Overview

Due to the limitations of traditional active learning, we propose new learning paradigms for
solving real-world problems. According to different settings and goals, four related paradigms
are proposed, including learning actively and conservatively, learning actively and aggres-
sively, learning actively with conservative-aggressive tradeoff and learning actively with min-
imal/maximal effort.
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1.4.1 Learning Actively and Conservatively
The new paradigm of learning actively and conservatively is proposed to study the learning
processes that the traditional active learning ignores. More specifically, it focuses on the learn-
ing process of selecting unlabeled examples gradually, and tries to reduce the number of mis-
takes that the learner makes in predicting them. The learning process is important in many
real-world applications. Taking the direct marketing as an example again, to make the market-
ing more efficient, a learner (or an agent) has to focus on the selection process and tries to find
and approach the “right” examples (customers) [106]. Accordingly the number of mistakes
made during the learning process is reduced.

The proposed paradigm of learning actively and conservatively (see Figure 1.4 for its frame-
work) is applicable for the problems that are of the following settings. First of all, unlabeled
examples are provided and learners can actively select examples from them (Steps 1 and 2 in
Figure 1.4). This is the same as traditional active learning. In the direct marketing example, all
the customers are unlabeled (not knowing who is “buying” and who is “not”), and a sales agent
can select the customers to approach. Secondly, the selected unlabeled examples are predicted
by the learner itself, and the true label is revealed after each prediction (Steps 4 and 5). In direct
marketing, the true label of a customer (”buying” or ”not buying”) is revealed after a learner
(an agent) approaches a predicted buyer. The goal of this paradigm is to minimize the number
of mistakes for predicting unlabeled examples during the iterative learning process.

Unlabeled Data

Labeled 
Data

Learning 
algorithm

Selection

Model

Learning Actively and Conservatively

Prediction

1

2

3

4

5

6 7

Minimizing the 

number of mistakes 

for predicting 

unlabeled data  

during the whole 

learning process.

Figure 1.4: The framework of learning actively and conservatively. The learning is an iterative
process of selecting examples actively to predict. The goal is to minimize the number of
mistakes in predicting the unlabeled examples during the learning process. The numbers (1-7)
indicate the workflow of the paradigm in each iteration.

Clearly, the problems under the paradigm of learning actively and conservatively cannot
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be solved by the traditional active learning algorithms. To fill the gap, we propose a new and
effective algorithm called Most-Certain Learning (MCL). The basic idea of MCL is to select
the next unlabeled example that can be predicted by the learner with the highest certainty (thus,
it is conservative). The rationale behind is that learning is a gradual process, and the uncertain
examples can become certain ones with more examples being learned. In this way, the goal of
minimizing the number of mistakes during the learning process can be achieved.

In our empirical study, first of all, we apply MCL to an educational game Zoombinis, which
is a learning problem under the paradigm of learning actively and conservatively (see Section
2.3.2 for the details), to illustrate the learning process of MCL. Then we also apply MCL
to both UCI [2] datasets and one real-world application, direct marketing. The experimental
results show that MCL works much better than other learning strategies. Furthermore, we
also discover another advantage of MCL: the learning process is much more stable than other
learning strategies. This property is often important as it makes the learning behavior more
predictable. See Chapter 2 for detailed studies on this learning paradigm.

1.4.2 Learning Actively and Aggressively
To the opposite of the paradigm of learning actively and conservatively, traditional active learn-
ing algorithms with uncertain sampling are under the paradigm of learning actively and aggres-
sively as they usually select the example that is predicted with the least certainty (i.e., aggres-
sively) to query an oracle. Under this paradigm, the goal is to build a good model with as few
labeled examples as possible. However, in traditional active learning, the label quality cannot
be guaranteed as oracles are usually imperfect and the noisy labels of examples deteriorate the
learning performances badly.

To guarantee the label quality, we use multiple imperfect oracles which are able to return
both labels and their confidences in the labels (see Figure 1.5 for the framework). In fact, this
circumstance exists commonly in real-life. For example, in paper reviewing, multiple reviewers
(i.e., oracles or labelers) are requested to label a paper (as accepted, weak accepted, weak
rejected or rejected), and usually the reviewers are required to give not only labels (accept,
weak accept, weak reject or reject) for the paper, but also their confidences (high, medium
or low) for the labelings. With the labels and confidences given by oracles, the final label
(decision) quality can be estimated and guaranteed by querying more oracles if needed (see
Steps 4, 5 and 6b in Figure 1.5).

Under this paradigm, we propose a new active learning strategy, called c-certainty label-
ing. C-certainty labeling guarantees the label quality to be greater than or equal to a given
threshold c (c is the probability of correct labeling; see Section 3.2). Furthermore, instead
of assuming noise level to be example-independent in the previous works, we allow it to be
example-dependent. Our learning algorithm selects the best oracles to query for each given
example. Thus, fewer queries are required on average for a label to meet the threshold c com-
pared to random selection of oracles. As a result, for a given query budget, a more accurate
model can be built with our learning algorithm.

Extensive experiments are conducted on the UCI [2] datasets by generating various types
of oracles. The results show that our new algorithm is robust, and performs well for all the
types of oracles. The reason is that, under the new learning paradigm, our learning algorithm
can guarantee the label quality by selecting the best oracles to query (See Chapter 3 for the
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Figure 1.5: The framework for learning actively and aggressively with multiple noisy oracles.
The learning is an iterative process of selecting examples actively to query oracles. For each
example, the learner queries different oracles repeatedly until the label quality is guaranteed
such that a good model can be built through this learning process. The numbers (1-8) indicate
the workflow of the paradigm in each iteration.

detailed studies of this learning paradigm).

1.4.3 Learning Actively with Conservative-Aggressive Tradeoff

In the paradigm of learning actively and conservatively, learners always predict unlabeled ex-
amples during the learning process. On the other hand, in the paradigm of learning actively
and aggressively, learners always query oracles for the labels. However, in many real-world
applications, labels can be acquired by either querying oracles or making predictions. For ex-
ample, when letters are sorted by using OCR (optical character recognition) devices of the post
office, if the hand-written postal codes are ambiguous, or too difficult to recognize, they will
be passed to the oracles (human) for labeling (i.e., querying oracles). However, if the OCR
can predict accurately the hand-written postal codes, the letter will be sorted and mailed to the
recipient directly (i.e., predicting directly) even though there is a small chance the prediction
is wrong. To handle this type of learning problems, we propose a new paradigm of learning
actively with conservative-aggressive tradeoff (as shown in Figure 1.6) such that the correct
actions (predicting or querying) can be taken during the learning process.

The settings for the paradigm of learning actively with conservative-aggressive tradeoff
are as follows. Firstly, the labels of examples are unknown. Secondly, to obtain the labels,
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Figure 1.6: The framework of learning actively and conservative-aggressive tradeoff. The
learning is an iterative process of actively selecting unlabeled examples to query oracle or for
prediction depending on their costs. The numbers (1-7) indicate the workflow of the paradigm
in each iteration.

two actions can be considered: querying oracles (e.g., asking human and experts) or making
predictions (e.g., predicting mails by OCR directly). Lastly, cost has to be paid for making a
wrong prediction or for querying an oracle. To reduce the cost, the choice of actions depends on
the expected cost for making a wrong prediction (Ce) and the cost for query an oracle (Cq). For
example, if Ce > Cq, the learner will choose to get the label by querying an oracle; otherwise,
the learner will choose to predict its label directly. The selection of the two actions is optimal
(i.e., obtaining the labels with minimal total cost) if the estimation of Ce is correct.

However, the expected cost Ce may not be very accurate particularly in the beginning of the
learning process as the model is not good enough. For the example that its expected cost Ce is
close to query cost Cq, it is likely that a wrong action will be taken, which may consequently
lead to a high cost. On the other hand, wrong actions will unlikely be taken for the example
that its Ce is much higher or much lower than Cq.

Considering the two actions and their different costs, we propose a novel learning algo-
rithm, called Decisive Active Learner (DAL), which always selects the example likely leading
to correct actions and prefers the action that is expected to cost less during the learning process.
The examples that will likely lead to wrong actions will be learned during the later stage, as
the learner may become more reliable (the probability is more accurate) and the action taken
will become more accurate with more example being learned.

An empirical study is conducted on UCI [2] datasets, and the results show that DAL is able
to select the correct actions to take during the learning process. Overall the performance of
DAL is the best in terms of the total cost compared with other typical learners under different
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cost settings. See Chapter 4 for detailed study on this learning paradigm.

1.4.4 Learning Actively with Minimal/Maximal Effort
In addition to the paradigms mentioned to improve the performances of learners on different
goals, we also consider the relations between the performance of a learner on achieving learn-
ing goals and the effort that the learner takes during the learning process. Intuitively the effort
can be reflected by the energy consumption of machine learning algorithms. As energy con-
sumption can be affected by many factors such as processor speed, monitor size, we will use
the amount of error to be corrected during learning, and the size of the learning models, to
approximate the effort.

In fact, the effort of active learning can correspond well to the actual effort in human learn-
ing, where two circumstances are usually studied. One is learning knowledge with minimal
effort. It is supported by an “i+1” education theory which suggests that less effort is required
for human learning a small piece of new knowledge (“1”) based on a large body of previously
learned knowledge (“i”)[49]. The other circumstance is that learning can be more efficient
by paying maximal effort on correcting mistakes. It also has been studied in psychology and
education in the past [105, 67].

The two circumstances of human learning researches are also important in the process of
building machine learning modules. More specifically, in machine learning, minimal effort in-
dicates consuming minimal energy during the learning process. Energy consumption control-
ling is very important[60], and when modules consume more energy they must be aggressively
cooled or batteries will die sooner [45]. On the other hand, learning efficiency is also crucial
for machine learning problems as tremendous data are collected everyday.

To study this learning effort problem, we propose a new paradigm of learning actively
with minimal/maximal effort. In this paradigm, the labels of the examples are all provided and
learners are allowed to select examples actively to learn. The learning goal is to control the
learning process by selecting examples actively such that the learning can be accomplished
with minimal effort or good models can be built fast with maximal effort. The framework of
the paradigm is shown in Figure 1.7.

For the minimal effort learning, we propose an effective learning algorithm Simple-to-
Complex (S2C). The basic idea of S2C is to repeatedly select and learn the example that its
prediction given by the current learner is the closest to the true label (i.e., the simplest exam-
ple) during the learning process. The rationale behind this greedy algorithm is that the complex
examples will become simpler with more examples being learned. In this way, the learning ef-
fort can be minimized for the whole learning process.

On the other hand, for maximal effort learning, we repeatedly chose to learn the example
that its prediction is the most different from the true label during the learning process. Due to
the largest difference, the example is expected to be the most informative for the learner. In this
way, it can improve the learner the most, and the learning is expected to be the most efficient.

The empirical study on UCI [2] datasets shows that our learning algorithms achieve the
learning goals quite well. In particular, minimal effort learner does take less effort compared
to other typical algorithms but it learns more slowly; on the other hand, maximal effort learner
learns faster but with more effort. Thus, both of the learners have their own advantages and the
determination on which learner to use depends on the learning goals.
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Figure 1.7: The framework of learning actively with minimal/maximal effort. The learning is
to control the iterative process of selecting examples actively such that the minimal effort is
consumed or model can be learned fast by paying maximal effort. The numbers (1-5) indicate
the workflow of the paradigm in each iteration.

1.5 Contributions of the Thesis
Traditional active learning has been extensively studied on learning a better model with fewer
labeled examples compared with traditional supervised learning. However, limitations exist
when the traditional active learning algorithms are applied to real applications, as mentioned.
To fill the gap, we propose four novel active learning paradigms based on the requirements of
real applications. The contributions of this thesis can be summarized as follows.

• We propose a new learning paradigm, learning actively and conservatively in Chapter
2. Under this paradigm, learners actively select examples to learn, but their behavior of
selecting examples is conservative in order to minimize the error in predicting examples.
The learning algorithm is called MCL (Section 2.2) which prefers to learn the example
that can be predicted with the highest certainty. This work is published in The Proceed-
ings of International Conference on Artificial Intelligence and Education (ICAIE), 2010
[63]

• Under the paradigm of learning actively and conservatively, we further implement two
learning algorithms: MCL-b (Section 2.3) and MCL-1 (Section 2.4). MCL-b is for min-
imizing the number of examples of both of the classes. The empirical studies are con-
ducted on an educational game and UCI [2] datasets. The results show that the algorithm
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proposed does reduce the number of mistakes in predicting unlabeled examples during
the learning process. MCL-1 is for retrieving the examples of one class in Chapter 2.4.
The experiments are conducted on both UCI datasets and a direct marketing dataset. The
results show that our learning algorithm works well on all the datasets, and our learning
algorithm does select more customers who will buy products than other learning algo-
rithms. This work is published in The 7th International conference on Advanced Data
Mining and Applications (ADMA’11) [62].

• The second paradigm is learning actively and aggressively in Chapter 3. It selects exam-
ples actively and aggressively to learn, which is the same as traditional active learning.
However, traditional active learning algorithms cannot guarantee label quality as oracles
may not be always correct. We extend this learning paradigm by asking oracles to pro-
vide both labels and confidences. With this extension, we guarantee label quality to be
higher than a given threshold c. In addition, an efficient learning algorithm is proposed
to select the oracles with high labeling confidence to query. Extensively empirical stud-
ies are conducted on UCI [2] datasets. This work is published in The 16th Pacific-Asia
Conference on Knowledge Discovery and Data Mining. May, 2012 [64].

• The third paradigm proposed is called learning actively with conservative-aggressive
tradeoff in Chapter 4. Under this paradigm, to obtain labels, learners are allowed to take
two actions: predicting directly by its current model or querying an oracle. The decision
on taking which of the two actions depends on the expected cost for predicting and the
cost for querying an oracle. To minimize the total cost, we proposed a novel learning
algorithm, Decisive Active Learner (DAL), which prefers to learn the example that its
action is more likely to be correct. Empirical study is conducted extensively on UCI
dataset and the results show that DAL does work well. This work is submitted to The
IEEE International Conference on Data Mining (ICDM), 2012.

• The last paradigm proposed is learning actively with minimal/maximal effort in chapter 5.
It studies the relations between learning effort and learning efficiency. More specifically,
two types of learning circumstances are considered: learning models with minimal effort
and learning models fast with maximal effort. Two learning algorithms, S2C and C2S,
are proposed for the two circumstances respectively. Experiments are conducted on UCI
[2] datasets and the results show that S2C learns models with minimal effort but its
learning efficiency is low; while C2S learns models with maximal effort but with high
learning efficiency. This work is published in Advances in Knowledge Discovery and
Data Mining, 2010 [61].
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Chapter 2

Learning Actively and Conservatively

In traditional active learning, learners only focus on the number of queries issued and the
performances of final models learned. However, they ignore the performances of learners
during the learning process. In this chapter, we propose a new paradigm of learning actively
and conservatively which focuses on the process of learners selecting examples iteratively to
learn and tries to make as few mistakes as possible in predicting unlabeled examples during the
learning process.

The learning process is important for many applications. For example, in direct marketing,
a sales agent (learner) has to focus on the process of selecting customers to approach, and tries
to make correct predictions (i.e., fewer mistakes) on the customer who will buy the product.
As another example, a doctor has to focus on the process of diagnosing each patient and tries
to predict correctly. This type of learning problems are under the paradigm of learning actively
and conservatively.

In general, the problems under the paradigm proposed have specific settings as mentioned
in Section 1.4.1. One is that unlabeled examples are available for learners to select actively.
This is the same as traditional active learning. The other one is that the selected example is
predicted by the learner and the true label will be revealed after each prediction. In the direct
marketing example, the true label of a customer (“buy” or “not buying”) will be revealed after
an agent predicts him/her as “buying” and approaches. The goal of the learning paradigm is to
minimize the number of mistakes in predicting unlabeled examples during the iterative learning
process.

Under the paradigm of learning actively and conservatively, we propose a new, practical
and effective learning algorithm, Most-Certain Learning (MCL). To minimize the number of
mistakes, MCL chooses to learn the next example whose label can be predicted by the current
learner with the highest certainty. This work of MCL is published in The Proceedings of
International Conference on Artificial Intelligence and Education (ICAIE), 2010 [63].

Furthermore, to satisfy the requirements of real-world applications, we further discuss two
types of MCL. One is that the learner must select and predict all of the remaining examples
as either positive or negative classes, called binary-class MCL, orMCL-b. The goal of MCL-
b thus is to minimize mistakes of both classes. For example, a doctor usually must see and
diagnose all patients as healthy or sick. The other type is that the learner only needs to select
and predict one class of examples, called single-class MCL, or MCL-1. In the direct marketing
example, an agent usually only cares about those customers who will likely buy the product

15
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(positive examples), and does not need to predict, approach, and verify customers who will
unlikely buy the product (negative examples). This work is published on The 7th International
conference on Advanced Data Mining and Applications (ADMA’11) [62].

The rest of this chapter is organized as follows. Section 2.1 reviews related works. Section
2.2 describes the framework of the Most-Certain Learning (MCL) strategy. Section 2.3 and
Section 2.4 present the details of implementing the two versions (MCL-b and MCL-1) of MCL
and present their experimental results respectively. We summarize the work of this chapter in
Section 2.5.

2.1 Related Works
The paradigm of learning actively and conservatively is an active learning paradigm in the sense
that it allows learners to select examples actively to learn. However, existing active learning
algorithms [82, 15] cannot solve the problems under the paradigm as their settings and goals are
different. The traditional active learning targets on minimizing the number of examples labeled
and the high prediction accuracy of final models; while our paradigm is to minimize the number
of mistakes in predicting unlabeled examples during the learning process. Furthermore, in the
traditional active learning learners can only get labels by querying oracles; while under our
paradigm, examples are predicted by learners and the true labels will be revealed after each
prediction.

The learning problems under our paradigm may seem to be similar to agnostic active learn-
ing [3, 16] as both of them are related to mistakes in labels. However, the noise in agnostic
active learning comes from the oracle who provides the labels, and the true labels are hidden.
The goal of agnostic active learning is to improve the sample efficiency. For our learning prob-
lem, the mistakes come from the prediction of the current immature learner and the true label
will be revealed after the prediction, and the goal is also different.

Another work that is quite similar to our work is self-directed learning [9, 38, 75]. The-
oretically it studies the learning problem on simple classes of concepts, such as disjunction,
conjunction, k-DNF and so on, to minimize the number of mistakes. However, the learning
algorithm proposed must know and keep the set of all target concepts. It chooses the next
example that has the greatest difference between the number of concepts that predict it differ-
ently (positive vs. negative labels). In a sense, the algorithm chooses the example that can be
predicted most certainly. However, the target concept class is often unknown, nor is it feasi-
ble to keep all the concepts for a learning algorithm in real-world applications. As far as we
know, there is no previous work in designing a practical learning algorithm that works well
(i.e., making fewer mistakes) for solving the problems under the paradigm of learning actively
and conservatively.

2.2 Most-Certain Learning (MCL) Strategy
As mentioned, the problems under the new paradigm cannot be solved by the traditional active
learning algorithms. To fill the gap, we propose a new, practical and effective learning algo-
rithm, Most-Certain Learning (MCL). The basic idea of MCL is to learn the example that can
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be predicted by the current learner with the highest certainty first, and leave the examples with
low certainty to learn during the later stage. One might think that the total number of mistakes
would be the same no matter what order of examples to be selected. Afterall, all unlabeled
examples need to be learned, from easy to complex or from complex to easy ones. It is analo-
gous to 1 + 2 + 3 = 3 + 2 + 1. However, we will show that the learning sequence does matter.
The rationale behind is that, with more examples being learned, the prediction accuracy of the
learner can be improved, and consequently uncertain examples can become certain. In this
way, the goal of minimizing the number of mistakes in predicting unlabeled examples can be
achieved. In particular, MCL can be defined formally as follows.

LetDU be the unlabeled example set, and C be the concept class overDU . MCL focuses on
the iterative learning process as follows: in each iteration, it chooses a new element (example)
xi ∈ DU that can be predicted by the current learner L with the highest certainty. It then
outputs the label li given by L and in response the true value ct(xi) will be revealed, where
ct (ct ∈ C) denotes the target function. The learner will update its current model with all the
labeled examplesDT . The learning process continues until all the elements inDU are learned
or other stopping criteria are met. Let m(L, ct) denote the number of mistakes made by L, i.e.,
the total times of li , ct(xi). The goal of MCL is to minimize m(L, ct). The pseudocode for
MCL is shown in Algorithm 1.

Algorithm 1: MCL
Input: Unlabeled DatasetDU; Training data: DT ; Initial model: M0
Output: Model: M and the number of mistakes: m
begin1

itr = 0; //the first iteration2

m = 0;3

whileDU <> NULL do4

for each xi ∈ DU do5

Calculate the certainty of xi;6

end7

//Select the most certain example8

Select the example xi with the highest certainty;9

li ← label prediction of xi;10

ct(xi)← the true label of xi;11

if li , ct(xi) then12

m = m + 1;13

end14

DT ← DT + xi;15

Update the current model withDT ;16

DU ← DU − xi;17

itr + +;18

end19

M←Mitr;20

ReturnM and m;21

end22
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MCL is a wrapper learning algorithm, and can take any classifier that generates delicate
probability prediction as its base learner, L. In this paper, bagged decision trees [71] are taken
as the base learner for two reasons. First of all, it is easy to obtain an accurate probability
of the prediction. The second reason is that a large number of empirical studies in machine
learning have shown that bagged decision trees make classification more accurately compared
to a single tree [8, 71].

MCL provides a framework for solving problems under the new paradigm. According to
the diverse learning problems in real-world applications, we further implement two types of
MCL. One type is that learners must select and predict all of the remaining examples as either
positive or negative class1, called binary-class MCL, or MCL-b. The goal of MCL-b thus
is to minimize the number of mistakes on both classes. For example, in the Zoombinis game
mentioned in Chapter 1 (for details see Section 2.3.2), a player has to label a Zoombini (a small
creature) with either of the two bridges. As another example, a doctor usually must see and
diagnose each patient as healthy or sick. The other type is that learners only need to retrieve
one class of examples, called single-class MCL, or MCL-1. In the direct marketing example,
an agent usually only cares about those customers who will likely buy the product (positive
examples), and does not need to predict, approach, and verify customers who will unlikely buy
the product (negative examples).

2.3 MCL-b Learning Algorithm
MCL-b works under the framework of MCL as follows. It selects the most certain example of
both classes and predicts it with its current model. Then MCL-b updates its current model with
the newly labeled example. This predicting-and-updating process iterates until all the examples
are labeled.

In this subsection, first of all we will introduce the implementation details of MCL-b. Then
we will present how MCL-b works and its performances on an educational game Zoombinis.
After that, we will show the experimental results of MCL-b on UCI [2] datasets extensively.

2.3.1 MCL-b Implementation Details
To implement MCL-b, three technical issues deserve extensive discussion. The first issue is the
selection of the most certain example. The second issue is the selection of the first example.
The last issue is how to select an example when the labeled examples are of the same class.

The first issue, selection of the most certain example, is crucial. The most-certain example
is the one that is predicted with the highest probability by the current learner, i.e., the example
that satisfies arg max

xi∈X
(max(prob+xi , (1 − prob+xi))). prob+xi is the probability of predicting xi as

positive. In bagged decision trees (which is used as our base learner), prob+xi is the number of
decision trees that vote for positive out of the total number of decision trees.

The second issue, the selection of the first example, can be tricky, as the current model
is empty. MCL-b scans the dataset and chooses the example that appears with the highest

1This study assumes that the learning problem is binary-class. The multi-class problem can be transformed to
binary-class problems.
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frequency. If no example appears more than once, MCL-b chooses one example from the
dataset randomly.

The last issue is how to choose the next example if labeled examples so far are of the
same class, as a model built from the examples of the same class, say positive, will predict all
examples as positive. Here, we use the Euclidean distance [92] as heuristic information for
selecting the next example. The basic idea is that the example far from a positive (negative)
center is likely negative (positive). Assuming that MCL-b has a positive example x1 with
nominal attribute values {1, 0, 0, 1}, we consider it as the center of positive, and the point that
has the furthest Euclidean distance from x1 (here the possible furthest Euclidean distance is 4)
as the center of negative. The most certain example is the one that is closest to either of the
two centers, and the label of the center will be assigned to the example. For example, if the
nearest example from x1 is yu, and the Euclidean distance dx1yu = 1, and the furthest is yv, and
dx1yv = 4, MCL-b would consider yv as the most certain example and label it as negative. The
reason is that yv has distance 0 to the negative center, which is closer than the distance of yu to
the positive center. This strategy can be formulated as follows.

y =
{

yu, if
∑

xi∈S dxiyu < |S | ∗ m −
∑

xi∈S dxiyv
yv, otherwise

(2.1)

where S is the set of labeled examples, |S | is the size of S , m is the number of attributes, dxiyu is
the Euclidean distance between xi and yu, and yu and yv are the closest and furthest unlabeled
examples to the current labeled examples respectively.

After presenting the implementation techniques, we will show how MCL-b works on a
learning problem (an educational game Zoombinis) under the paradigm of learning actively
and conservatively. Then we will present the performances of MCL-b in playing the game.
Furthermore, extensive empirical studies on UCI [2] datasets will also be conducted.

2.3.2 Application in the Educational Game Zoombinis
MCL-b can be applied to many real-world learning problems under the paradigm of learning
actively and conservatively, even including some human concept learning problems. In this
section, we apply the machine learning algorithm MCL-b to an educational game, Zoombinis,
to illustrate how it works and show its performances on this learning problem.

The game Zoombinis is a well-known series of software published by the Learning Com-
pany 2. It aims at children or teenagers, but fun for adults as well. It is based on the “Zoombi-
nis”, small blue creatures, which are depicted with varying hairs, eyes, noses and feet. Figure
2.1 shows three Zoombinis and possible feature values. In the Logical Journey of the Zoom-
binis game, Zoombinis have to search for a new home, and on their journey they encounter a
variety of “obstacles” (puzzles), which players must solve. In this experiment, we choose one
puzzle, called the Allergic Cliffs, to work on.

In the Allergic Cliffs (Figure 2.2), the player is given 16 randomly-generated Zoombinis.
The goal is to take all of the 16 Zoombinis across the cliff to the right side over the two
bridges. The two bridges are supported by 6 wooden pegs. Each bridge allows only certain

2There are three titles in the series: The Logical Journey of the Zoombinis, Zoombinis: Mountain Rescue, and
Zoombinis: Island Odyssey
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Hair=small, Eyes=glasses, 
Noses=green, Feet=springs

Hair=short, Eyes=wide open, 
Noses=orange, Feet=two wheels

Hair=flat-topped, Eyes=sun 
glasses,  Noses=red, Feet=rollers

 Hair (shaggy, ponytailed, flat-
topped,  small, and short) 

 Noses (green, orange, red, 
purple and blue) 

 

Eyes (wide open, one eyed, half-
closed, glasses and with 
sunglasses)  

 
Feet (shoes, rollers, springs, 
two wheels and propellers) 

(a) Three Zoombinis

Hair=small, Eyes=glasses, 
Noses=green, Feet=springs

Hair=short, Eyes=wide open, 
Noses=orange, Feet=two wheels

Hair=flat-topped, Eyes=sun 
glasses,  Noses=red, Feet=rollers

(b) Zoombinis’ features

Figure 2.1: Zoombinis and their features.

 Six wooden pegs 

 

Figure 2.2: Allergic cliffs of Zoombinis game.
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Figure 2.3: Screen shot of playing the Allergic Cliff (Zoombinis at the top right corner crossed
bridge b1 (top bridge); those at the bottom right corner crossed bridge b2 (bottom bridge)).

Zoombinis to cross if they have certain combinations of features. The pattern (model) for each
bridge is randomly formed and hidden to the player. For example, the top bridge may only
allow Zoombinis with red or blue nose to cross (and thus, the bottom bridge allows all other
Zoombinis to cross). If the player selects a Zoombini to cross a wrong bridge, the cliff would
sneeze, the Zoombini will be sent back to the left side, and a peg will spring loose by the
powerful sneeze. Figure 2.3 is a screen shot in taking the Zoombinis in Figure 2.2 across the
cliff. We can see that two pegs have sprung loose due to two mistakes. If all six pegs come
loose before all of the 16 Zoombinis pass through, the player fails this part of the journey, and
must try again with 16 new Zoombinis (and a new hidden concept for the bridge). Thus, to win
the game, players are allowed to make at most 5 (including 5) mistakes.

This learning problem of Allergic cliffs is clearly under the paradigm of learning actively
and conservatively. First of all, unlabeled examples (the 16 Zoombinis without knowing which
bridge to cross) are provided, and a learner (player) is allowed to select examples actively to
learn (select any Zoombini to try). The label (which bridge a Zoombini should go) is given
after each prediction. The goal of the player is to predict and learn the model of allowable
Zoombinis for the bridge, without making more than 5 mistakes in the process. In addition, as
each Zoombini has to be labeled with either of the two labels (bridges), MCL-b is suitable for
this learning problem.

To study the performances of MCL-b in playing the Zoombinis game, we implement it
based on the WEKA [104] source code, and take bagged decision trees as the base learner. Ten
groups of Zoombinis data are generated by playing the game 10 times and each group has 16
Zoombinis. All the Zoombinis (example) are encoded with their feature values.
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2.3.2.1 A Case Study

We first show how MCL-b works by presenting the detailed process of MCL-b in playing one
specific game as follows. Figure 2.4 shows the set of 16 Zoombinis that MCL-b needs to take
across the bridges in the Allergic Cliff puzzle. For easy description, we assign each Zoombini
an ID number as shown in Figure 2.4, and the attribute values of the first three Zoombinis are
shown in Table 2.1.

Figure 2.4: A case of the Zoombinis game for a human subject.

Table 2.1: The attribute values of the first three Zoombinis in Figure 2.4 .
Zoombini ID hair eyes nose feet
01 small glasses green springs
02 shaggy glasses orange springs
03 shaggy sun glasses red springs

As no model exists at the beginning, MCL-b starts learning with Zoombini 01 and se-
lects bridge b1 randomly for it, and finds that it passes b1 safely. One labeled example is
obtained. Then, to select the next Zoombini, MCL-b calculates the distances between the la-
beled example and all unlabeled examples, and finds that Zoombini 05 is totally different from
Zoombini 01. Thus, MCL-b predicts Zoombini 05 as going through bridge b2, and the re-
sult shows that the prediction is correct. After having two examples, MCL-b builds a model
“if Eyes=glasses then uses b1; otherwise uses b2”. According to this model, MCL-b takes
Zoombini 02 (Eyes=glasses) through b1 successfully. Then it takes Zoombini 03 (Eyes=sun
glasses) through b2. However, it fails. With new labeled examples, the model is updated to be
“if Feet=spring then use b1; otherwise use b2”. With this model, Zoombini 09 uses b1 safely,
and Zoombini 07, 13, 15 use b2 safely. However, Zoombini 11 fails in using b2. The model
is updated again and becomes “if feet = spring then the Zoombini uses b1 (bridge 1); else if
nose = blue the Zoombini uses b1; otherwise (feet = not spring and nose = not blue) the Zoom-
bini uses b2” (see Figure 2.6). According to this model, all the rest Zoombinis go through the
bridges safely (the label of each Zoombini are shown in Figure 2.5).
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b1:

b2:

Figure 2.5: Zoombinis going through b1 (upper) and b2 (lower).

 

b1 

feet 

nose 

b1 b2 

spring non-spring 

blue non-blue 

Figure 2.6: Tree model built over the Zoombinis.
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2.3.2.2 Comparison of Learning Sequences in the One Case

To compare with MCL-b, we implement another two learning strategies. The first strategy is
most-uncertain sampling which is widely and successfully applied in active learning [82, 101],
and we call it most uncertain learning (MUL) in this work. MUL always selects the unlabeled
example that is labeled by the current learner with the highest uncertainty. Compared to MCL-
b, MUL is competitive and may make fewer mistakes in predicting unlabeled examples, as
many active learning works [82, 101] have concluded that it can build a good model quickly and
may make fewer mistakes during the later learning stage. The other strategy is Random, which
builds models by selecting examples randomly, and is used as a baseline for the comparison in
the experiment.

For comparison, both MUL and Random also use the bagged decision trees as their base
learner and are implemented based on the WEKA source code. The number of mistakes and
the learning sequences of Zoombinis (examples) are compared for the specific case in the
following.

For comparison, we list the number of mistakes and the learning sequences of MCL-b,
MUL and Random in Table 2.2. It shows that MCL-b makes two mistakes for taking all the
16 Zoombinis across the cliff, and MUL makes 6 and Random makes 4 mistakes respectively.
That is, MCL-b makes the fewest mistakes, and MUL makes the most mistakes on the same
set of Zoombinis.

Table 2.2: The number of mistakes and the learning sequences of MCL-b, MUL and Random.
Learner No. of mistakes Sequence of Zoombinis selected
MCL-b 2 01,05,02,03,09,07,13,15,11,04,14,16,06,08,10,12
MUL 6 01,04,07,13,15,08,09,14,16,10,12,02,05,03,06,11
Random 4 01,07,15,04,09,11,05,02,03,12,14,06,10,16,13,08

Why the number of mistakes of the three learning strategies are different? Since the base
learners of MCL-b, MUL and Random are the same, i.e., bagged decision trees, the only differ-
ence is their learning sequence of examples (Zoombinis), as shown in Table 2.2. It is evident
that the learning process is crucial for achieving the learning goal of this problem.

2.3.2.3 Comparison on 10 Sets of Zoombini Data

In this section, we will present the experimental results on all the 10 sets of Zoombini data in
terms of the number of mistakes and the learning efficiency. The number of mistakes is crucial
in playing the Zoombinis game, and it determines if the learning is successful or not. Learning
efficiency is not the goal for solving this problem, but still it allows us to analyze the learning
behavior extensively.

To observe the number of mistakes each learning strategy makes, we allow the learning
process to continue until all of the 16 Zoombinis have been taken to the right side of the cliff,
even if the number of mistakes is already greater than five. The numbers of the mistakes made
by MCL-b, MUL and Random on the 10 games of the Allergic Cliff are presented in Figure 2.7.
The x axis indicates the 10 games and y axis the number of mistakes. We can see clearly that
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for all the 10 games, MCL-b makes no more mistakes than MUL and Random. On average,
the number of mistakes made by MCL-b is about 40% less than that by MUL and Random.

If we only consider the number of mistakes less than 6 (otherwise, the game is lost), MCL-
b still makes about 15% and 20% less mistakes than MUL and Random respectively. MCL-b
wins all the 10 games, but both MUL and random fail in 4 games. The t-test result also confirms
that such a difference is significant. (The t-test shows the difference between MUL and Random
is not significant). Thus, MCL-b indeed makes the least number of mistakes during the learning
process.
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Figure 2.7: The number of mistakes on the 10 sets of Zoombini data.

The experimental result on the number of mistakes agrees with our expectation that MCL-b
makes fewer mistakes than the other two learning strategies. The rationale behind is that learn-
ing is a gradual process. MCL-b exploits the examples that its current model can predict with
high certainty, and this exploitation process makes those uncertain examples become certain
gradually. However, MUL, which we think may be a strong competitor of MCL-b in mini-
mizing the number of mistakes, makes much more mistakes than MCL-b does in playing this
game. Overall, MUL even makes more mistakes than Random.
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Figure 2.8: The learning efficiency of the three learning strategies.

Is there any advantage of the aggressive learner MUL over the conservative learner? Intu-
itively, MUL should learn the model more efficiently than MCL-b (even though MUL makes
more mistakes than MCL-b). To confirm our intuition, we show the average testing error rate of
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the 10 sets of data with error bar during the learning processes of MCL-b, MUL and Random
in Figure 2.8. The x axis is the number of examples that the current model is built on, and the y
axis is the average prediction error rate on the remaining examples. The smaller the prediction
error rate, the better the learned model is. From the figure, we can clearly see that the error rate
of MUL decreases most quickly. That is, MUL does learn the model more efficiently (even
though it makes more mistakes as shown earlier).

To summarize, the experimental results show that MCL-b does play the educational game
well. However, its learning efficiency in building a good model is quite low.

2.3.2.4 Comparison between Human Subjects and Machine Learners

After presenting the performances of the three machine learners in playing the Zoombinis
game, it would be interesting to compare the performances of human learners and machine
learners. Several graduate students in our lab are invited to solve the same puzzle. We first
introduce the game to them (without asking them to use any learning strategy), and let them
play it once to become familiar with the game. We tried to find if they are using a strategy
similar to our machine learners consciously or unconsciously when they are playing the game.

To compare the differences between human subjects and machine learners, we present the
average number of mistakes they make for playing the game on the 10 sets of Zoombinis in
Figure 2.9. We can see that, in general, human subjects make a bit more mistakes than MCL-b,
and much fewer than MUL.
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Figure 2.9: Comparison of the number of mistakes.

How could human subjects perform so well? By studying their playing process, we find
that the human subjects tend to select the examples that can be predicted well by the current
concept. For example, after taking two Zoombinis across the cliff one subject learns that the
Zoombinis with red nose go through bridge b1. Then he prefers taking the Zoombinis with
red nose to cross b1 as he thinks that it is more likely to be correct. That is, in this case, the
subject does seem to use the MCL-b strategy, even though the performance is not as optimally
as MCL-b.

2.3.3 Empirical Studies of MCL-b on UCI Datasets
The empirical study of MCL-b has been done on the Zoombinis game as stated and the results
have shown that MCL-b works well in reducing the number of mistakes for predicting unla-
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Dataset # of Attribute Class dist.(0/1) Dataset # of Attribute Class dist.(0/1)
anneal 38 484/214 ecoli 7 193/143
autos new 25 138/67 glass new 9 138/76
breast cancer 10 458/241 heart-h 12 188/106
colic 22 232/136 sonar 60 111/97
diabetes 8 500/268 vote 16 248/187

Table 2.3: Datasets used in the experiments

beled examples during the learning process. However, the dataset for the game is too small
(only 16 Zoombinis). To show the performances of MCL-b further, we conduct the experiment
on UCI [2] datasets and compare MCL-b with MUL and Random, which have been introduced
in Section 2.3.2.2.

In this experiment, MCL-b, MUL and Random are implemented and applied to 10 UCI
[2] datasets shown in Figure 2.3. The datasets are commonly used in the supervised learning
research, and for each dataset 70% examples are used as training data and 30% as test data. In
our experiment the t-test results are of 95% confidence.

To compare the different learning strategies extensively and systematically, three crucial
measurements, the number of mistakes, volatility and learning efficiency, are used in this
empirical study3. The number of mistakes is the number of unlabeled examples being pre-
dicted wrongly by the learner during the learning process. This measurement would be the
most important, as minimizing the number of mistakes is the goal of the learning paradigm.
The second measurement volatility is the standard deviation of the number of mistakes from
running r times (r=5 in our experiment). In particular, volatility = (

∑r
i=0(M(MCL, ct)i −

1
r
∑r

i=0 M(MCL, ct))2
i )1/2. That is, volatility indicates the stability of a learning algorithm.

The less the volatility, the more predictable the learning behavior is. The last measurement
is learning efficiency, which indicates how fast a learner learns a good model. A learner with
higher learning efficiency requires fewer labeled examples to train a model that has lower error
rate in predicting test data.

2.3.3.1 Comparison of Number of Mistakes

To observe the performance of MCL-b in terms of the number of mistakes, we run the learning
strategies on each dataset for 5 times, and show the averages number of mistakes on learning
1/4, 2/4, 3/4 and 4/4 of the training data respectively in Figure 2.10. We can see clearly that the
mistakes made by MCL-b on learning 1/4 data are much lower than that by Random and MUL.
Even though the difference between MCL-b and the other two learning strategies reduces with
increasing labeled examples, it still makes fewer mistakes.

To make the comparison clearer, we summarize them further in Table 2.4. The table shows
that the average number of mistakes made by MCL-b are 10%, 22% and 19% less than that by
Random, and MUL respectively.

3Actually the two measurements, the number of mistakes and learning efficiency, have been used in the empir-
ical study on the Zoombinis game. However, volatility has not been used, as the dataset of the game is too small
(only 16 examples) and volatility may not work properly.
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(a) Mistakes on 1/4 of data (b) Mistakes on 2/4 of data
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(c) Mistakes on 3/4 of data (d) Mistakes on 4/4 of data
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Figure 2.10: The number of mistakes

Table 2.4: The ratio of mistakes between MCL and the others
MCL/Random MCL/MUL

1/4 of data 55% 33%
2/4 of data 66% 43%
3/4 of data 75% 54%
4/4 of data 90% 78%
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(a) anneal (b) ecoli
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(c) vote
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Figure 2.11: Performances of models built on the first 12 examples
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The t-test results also show that MCL-b performs better than the other two learning strate-
gies on all the 10 datasets except that it ties with Random on three datasets (anneal, ecoli and
vote) after the whole training data are learned. That is, in general MCL-b does reduce the
number of mistakes made during the learning process.

Why does the tie between MCL-b and Random happen on the three datasets? The predic-
tion error rate of the models learned over the first 12 examples in Figure 2.11 shows that the
model built by Random has already performed well by learning a few examples on the three
datasets. The good performance of the model indicates few mistakes in labeling the remaining
examples, which leads to similar performance between Random and MCL-b.

However, one might wonder why MUL makes more mistakes than Random and MCL-b,
even though we can see that it builds a good model even faster than Random in Figure 2.11. To
explain this, we show the number of mistakes made during the learning process on two datesets
(due to the similar performances on the 10 datasets), anneal and autos, in Figure 2.12. The x
and y axis are about the number of mistakes and the number of examples labeled. It shows
that MUL may make many mistakes even after a good model is built, as shown in Figure 2.12.
This is because MUL always chooses the most uncertain example to predict. Even for a good
model, mistakes still can happen on the most uncertain examples.

(a) anneal (b) autos
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Figure 2.12: Mistakes vs. labeled examples

2.3.3.2 Comparison of Volatility

As mentioned, volatility is the standard deviation of the number of mistakes of different runs.
The volatilities of the three strategies are presented in Figure 2.13. It shows clearly that the
volatility of MCL-b is significantly less than that of MUL and Random on all the 10 datasets
without exception. The reason is that MUL chooses the most-uncertain example to learn in
each iteration, which may affect the current learner by a wide margin. On the other hand,
MCL-b always selects the most-certain example, which may not be able to improve the current
model much, but in a stable manner. The low volatility is important in real applications, as it
indicates that the learning behavior is more predictable.
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Figure 2.13: Volatility of learners on UCI datasets.

2.3.3.3 Comparison of Learning Efficiency

Learning efficiency indicates how fast a learner learns a model that has low error rate in predict-
ing test examples. Active learning research has shown that MUL has high learning efficiency.
On the other hand, MCL-b is expected to learn slowly. To verify our expectation, we show the
predictive error rate of the models on one dataset (due to the similar performance on the 10
datasets), autos, in Figure 2.14. The x and y axis are about the number of examples labeled
and the prediction error rate of the current model on test data. Figure 2.14 shows clearly that
the error rate of MUL drops dramatically, while the error rate of MCL-b reduces slowly, as ex-
pected. This indicates that the most uncertain examples are more informative and can improve
the current model efficiently.
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Figure 2.14: Learning efficiency on UCI datasets.

In summary, MCL-b does reduce the mistakes in predicting examples during the learning
process. Meanwhile, MCL-b produces more stable results in different runs than MUL and Ran-
dom. Thus, MCL-b is a better learning strategy for solving the problems under the paradigm
of learning actively and conservatively. However, MUL, which is considered to be a strong
competitor to MCL-b, achieves the opposite in spite of its great learning efficiency (learning a
good model with fewer examples). It confirms our expectation that traditional active learning
strategies cannot solve the problems well.
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After introducing MCL-b and the results of the empirical studies, we will present the imple-
mentation details of MCL-1 and its experimental results on both UCI datasets and a real-world
application of direct marketing.

2.4 MCL-1 Learning Strategy

MCL-1 is designed to label (retrieve) examples of one class, such as the customers who will
buy the product in direct marketing or the movies one likes to watch in movie selection. In the
following subsection, we will introduce the details of implementing MCL-1, and present the
experimental results on UCI datasets and one real application dataset respectively.

2.4.1 MCL-1 Implementation Details

Similar to MCL-b, MCL-1 selectively learns the example that can be labeled by the current
model with the highest certainty in each iteration, and updates its model with all the labeled
examples. However, as MCL-1 only cares about the examples of one class (to ease description,
we assume the class is positive), the implementation techniques of MCL-1 are different from
MCL-b on three aspects.

Firstly, MCL-1 chooses the most certain positive example to label. More specifically, MCL-
1 chooses the example that satisfies arg max(prob+x0

, · · · , prob+xi , · · · , prob+xn), where prob+xi is
the probability of labeling an example xi (xi ∈ X) as positive by the current model. For instance,
if two examples, x1 and x2, are predicted as negative with probability 0.8 and positive with 0.7
respectively, MCL-1 will select x2 to predict, as it is more certain to be positive.

Secondly, MCL-1 chooses the example that has the shortest Euclidean distance to the pos-
itive center if all the labeled examples are of the same class. Suppose that we have one labeled
example x1 and two unlabeled yu, which is the closest to x1, and yv, the furthest from x1. If
x1 is negative, MCL-1 will choose yv and predict it as positive; otherwise it will choose yu and
predict it as positive.

Lastly, what is the stopping criterion for MCL-1? Ideally a learner should stop learning
when all the positive examples are retrieved. However, it is infeasible and impossible to know
if the criterion is satisfied before all the examples are labeled. MCL-1 takes a similar but more
practical criterion. It calculates the value of the F measure4 after selecting each most positive
example. The F measure can be calculated as follows.

Fmeasure =
2 × precision × recall

precision + recall
(2.2)

If the value of the F measure reduces in three iterations successively (three-step lookahead
strategy), MCL-1 stops learning. The idea is that if three most positive examples selected
successively are negative, the positive examples are expected to be quite rare in unlabeled
examples with high certainty, and MCL-1 stops learning.

4F measure is often used to evaluate the performance of Information Retrieval (IR) system [56, 93].
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2.4.2 Empirical Studies of MCL-1 on UCI Datasets

MCL-1 is to retrieve positive examples from a dataset. Accordingly we modify the learning
strategies, MUL and Random, so that they are comparable. More specifically, MUL selects the
most uncertain positive example. That is, the example that is labeled as positive but with the
probability closest to 0.5. Random selects positive examples randomly. That is, it predicts an
example if the prediction is positive; otherwise it reselects another one.

Due to the different goals, the measurement for MCL-1 is also different from MCL-b.
Firstly, MCL-1 uses the F measure to assess the performance of learning strategies, as the
number of mistakes may not work well when only one class is cared about. For example, given
a dataset including 20 positive examples, learning strategy A retrieves 10 examples as positive
with 2 mistakes, and strategy B retrieves 20 examples with 4 mistakes. Strategy A would be
better according to the number of mistakes. However, the measurement disagrees with the goal
of MCL-1, i.e., retrieving more positive examples. On the other hand, F measure shows that
strategy B is better, as the F measure value of B (2×0.8×0.8

0.8+0.8 = 0.8) is greater than that of strategy
A (2×0.8×0.4

0.8+0.4 = 0.54). Secondly, similar to MCL-b, volatility is also an important measurement
in this experiment. The difference is that the volatility here is the standard deviation of the F
measure.

As mentioned, MCL-1 stops learning if its F measure decreases on three steps successively.
However, this lookahead strategy is not proper for MUL and Random, as their F measure may
still increase largely even after many steps of decrease. Thus, for them, the learning process
continues until all the examples are learned, and the peak value of F measure is compared with
MCL-1.

The 10 UCI [2] datasets used are the same as those introduced in Section 2.3.3. The com-
parison is based on two aspects, including the F measure and volatility5.

First of all, we show the F measure of MCL-1, MUL and Random in Figure 2.15 on two
datasets (due to similar results on all datasets), autos and sonar. In Figure 2.15, the curve of
MCL-1 ends when the F measure reduces successively for three steps (without learning the
rest); while the curves of the other two strategies end at the peak values (learned all the rest but
without showing them). We can see clearly that the F measure of MCL-1 still is much higher
than that of the other two strategies.

Secondly, we present the performance of MCL-1, MUL and Random in terms of the F
measure on all the 10 datasets, and the results are presented in Figure 2.16. The x axis is the
datasets and y axis is the average F-measure values of five runs on each dataset. It is clear that
MCL-1 has much higher F measure value than MUL and Random. More specifically, the F
measure value of MCL-1 is about 1.4 to 1.7 times as much as that of MUL and Random. The
t-test results also confirm that MCL-1 wins the other two strategies on all the datasets without
exception.

Finally, we present the volatility of the three learning strategies in Figure 2.17. The x and
y axis indicate datasets and volatility respectively. It shows that MCL-1 is extremely stable on
all the 10 datasets. Particularly, the volatilities MCL-1 on 5 datasets are almost zero. However,
MUL is extremely volatile, even much more volatile than Random.

5We do not measure the learning strategies with learning efficiency as we do on MCL-b, as in this experiment
we try to retrieve the examples of one class.
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(a) autos (b) sonar
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Figure 2.15: The F measure curves of MCL-1 (with three-step lookahead stopping criterion),
MUL and Random.
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Figure 2.16: Comparison of the F measure on UCI datasets
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Figure 2.17: Volatility of the F measure on the 10 UCI datasets
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The experiment on UCI [2] datasets show that MCL-1 performs better than the other learn-
ing strategies in solving the problems under the paradigm of learning actively and conserva-
tively. Furthermore, the conservativeness of MCL-1 in example selection makes the learning
process more stable and predictable.

2.4.3 Application in Direct Marketing

In addition to the UCI datasets, we also apply the learning strategy MCL-1 to an up-selling
(marketing) application6. The up-selling dataset is from KDD-Cup 2009 (the small training set)
[66], which has 50,000 examples and each example has 230 attributes. The first 190 attributes
are numerical and the rest 40 are categorical, and plenty of missing values are included in the
dataset. The class label is binary {+1, -1}, and “+1” indicates successful up-selling.

As in the up-selling application, a sales agent only cares about the customers (examples)
of the one class (who will buy more expensive items), MCL-1 is suitable for this learning
problem. For comparison, MUL and Random are also applied to the dataset. The experiment
results in terms of the F measure are shown in Figure 2.18. The results are consistent with that
on UCI datasets. In spite of the huge number of attributes and large number of missing values,
MCL-1 still works significantly better than the other two learning strategies. Specifically, the F
measure value of MCL-1 is about 35% higher than that of Random, and 25% higher than that
of MUL.
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Figure 2.18: The F measure on the marketing data

However, the F measure value of MCL-1 is quite low (only about 0.12). To find out the rea-
son, we check the precision and recall, and find that the recalls for MCL-1 and MUL are quite
good, close to 0.8 and 0.7 respectively (0.47 for Random), but the precisions are extremely low,
0.14 for MCL-1, and 0.125 and 0.09 for MUL and Random respectively. The low precision
is caused by the extremely imbalance (more than 92% of the examples are negative) of the
up-selling dataset.

Note that our research is different from the competition of KDD Cup 2009. The competition
is a traditional classification problem and concerns the prediction error rate of the final model
and time efficiency. It is not for handling the problems under the learning paradigm proposed
in this chapter.

6In up-selling, an agent only cares about the customers who probably will purchase more expensive items.
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2.5 Summary
In this chapter, we proposed a new paradigm of learning actively and conservatively, which is
similar to traditional active learning in terms of selecting examples actively to learn. However,
its settings and goal are different from the traditional active learning. Under the paradigm
of learning actively and conservatively, the selected unlabeled examples are predicted by the
learner itself, and the true label is revealed after each prediction. The goal of the new paradigm
is to minimize the number of mistakes for predicting unlabeled data during the iterative learning
process, instead of the final models learned and the total number of labels needed in traditional
active learning.

To solve the learning problems under the new paradigm, we propose an effective learning
algorithm MCL. MCL iteratively selects the most certain examples to learn during the learning
process, such that the number of mistakes the learner makes in predicting unlabeled examples
is minimized. For diverse real-world applications, we further implement binary-MCL (MCL-
b) for the problems that care about the examples of both classes and single-MCL (MCL-1) for
the ones that care about only one class.

In the empirical studies, two other learning strategies are implemented for comparing with
MCL-b and MCL-1 respectively. For MCL-b, the experiments were conducted on the edu-
cational game Zoombinis and 10 UCI datasets. For MCL-1, the experiments were conducted
on the same 10 UCI datasets and one real-application dataset. The experimental results show
that both MCL-b and MCL-1 achieve their goals successfully on all the different datasets and
applications.
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Chapter 3

Learning Actively and Aggressively (for
Label Quality)

To the opposite of the conservative paradigm in Chapter 2, the paradigm of learning actively
and aggressively proposed in this chapter is aggressive. It allows learners to actively select the
challenging examples to learn. Its goal is to learn a model the fastest, i.e., to build a good model
with as few labeled examples as possible. Traditional active learning algorithms with uncertain
sampling strategy are under this paradigm as they usually select the example that is predicted
with the least certainty (i.e., challenging) to query an oracle and improve the current model
efficiently. However, traditional active learning algorithms cannot solve the problems under
this paradigm very well, as oracles are usually imperfect and the noisy labels of examples can
deteriorate the learning performances badly.

To rule out the negative effects of the noisy labels, querying multiple oracles has been
proposed in active learning [82, 90, 22]. This multiple-oracle strategy is reasonable and useful
in improving label quality. For example, in paper reviewing, multiple reviewers (i.e., oracles or
labelers) are requested to label a paper (as accepted, weak accepted, weak rejected or rejected),
so that the final decision (i.e., label) can be as accurate as possible.

However, there is still no way to guarantee the label quality in spite of the improvements
obtained in previous works [90, 22, 72]. Furthermore, strong assumptions, such as even distri-
bution of noise [90], and example-independent (fixed) noise level [22], have been made. These
assumptions, in the paper reviewing example mentioned above, imply that all the reviewers are
at the same level of expertise and each reviewer has the same probability in making mistakes
on the papers of different topics.

Obviously, these assumptions may be too strong and not realistic, as it is ubiquitous that
label quality (or noise-level) is example-dependent in real-world data. In the paper reviewing
example, the quality of a label given by a reviewer should depend heavily on how close the
reviewer’s research is to the topic of the paper. The closer it is, the higher quality the label has.

In this chapter, to guarantee the label quality given that the noise level is example-dependent,
we extend the settings of the aggressive paradigm as follows. Learners are allowed to query
multiple imperfect oracles which are able to return both labels and confidences in the labels.
As mentioned in Chapter 1, these extended settings exist commonly in real-world. Taking the
paper reviewing example again, usually a reviewer is required to provide not only a label (ac-
cept, weak accept, weak reject or reject) for a paper, but also his confidence (high, medium or

37
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low) for the labeling. Similar situation also exists in webpages labeling, image labeling and so
on. Under the new settings, the quality of final decisions (labels) can be estimated easily.

To guarantee the label quality under the paradigm with extended settings, we propose a
new active learning strategy, called c-certainty learning. For a given example, the c-certainty
learner assesses its label quality every time after obtaining a response from an oracle. If the
label quality is higher than or equal to a given threshold c (c is the probability of correct
labeling; see later), the example and its label will be added to labeled data; otherwise, more
oracles will be queried. In the paper reviewing example, with the labels and confidences given
by reviewers (oracles), we can estimate the certainty of the label. If the certainty is too low
(e.g., lower than a given c), another reviewer has to be sought to review the paper to improve
the label quality.

In addition, as in our work the noise level of each oracle is allowed to be example-dependent,
it would be more difficult for a learner to select good oracles to query than the previous work
assuming that the noise level is example-independent. We propose an effective learning al-
gorithm that is able to select the Best Multiple Oracles to query (called BMO) for each given
example. With BMO, the number of queries for an example to meet the threshold c is expected
to be reduced. This is crucial, as it indicates that, for a given query budget, BMO is expected
to obtain more examples with labels of high quality compared to selecting oracles randomly.
Consequently more accurate models can be built. The work in this chapter is published in The
16th Pacific-Asia Conference on Knowledge Discovery and Data Mining. May, 2012 [64].

This chapter is organized as follows. We review related work in Section 3.1. Section 3.2
introduces confidence of labeling, and the calculation of certainty. We present our learning
algorithm BMO in Section 3.3 and the experimental results in Section 5.5. We summarize the
work of this chapter in Section 3.5.

3.1 Related Works

Labeling each example with multiple oracles has been studied when labeling is not perfect in
supervised learning [72, 94, 96]. Some principled probabilistic solutions have been proposed
on how to learn and evaluate the multiple-oracle problem. However, as far as we know, none
of them can guarantee the label quality to satisfy a given threshold c, which can be guaranteed
in our work.

Other recent works related to multiple oracles make some assumptions which may be too
strong and unrealistic. One assumption is that the noise of oracles is equally distributed [90].
The other type of assumption is that the noise level of different oracles are different as long as
they do not change over time [22, 110]. Their works estimate the noise level of different oracles
during the learning process and prefer querying the oracles with low noise levels. However, it
is ubiquitous that the quality of an oracle is example-dependent. In this paper, we remove all
the assumptions and allow the noise level of oracles to vary among different examples.

Active learning on the data with example-dependent noise level was studied in [25]. How-
ever, it focuses on how to choose examples considering the tradeoff between more informative
examples and examples with lower noise level. In our work, we focus on how to use multiple
oracles to get labels with high quality.
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3.2 C-Certainty Labeling Quality
Under the paradigm of learning actively and aggressively, oracles are able to return both labels
and the confidences in the labels. For the study of this learning paradigm, we define confidence
formally first here. Confidence for labeling an example x is the probability that the label given
by an oracle is the same as the true label of x. We assume that the confidences of oracles on
any example are greater than 0.51.

According to the labels and confidences given by oracles, we guarantee the label certainty
of each example to be greater than or equal to c (c ∈ (0.5, 1]) (called c-certainty labeling). That
is, a label is valid if its certainty is greater than or equal to c. Otherwise, more queries would
be issued to different oracles to improve the label certainty until the threshold c is met.

However, given a label certainty C(TP|An−1) (lower than c) of an example x, how can
we update it after obtaining a new answer from an oracle? Let the set of previous n − 1
answers be An−1, and the new answer be An in the form of (P, fn) which indicates that the
confidence of labeling x to be positive (P) is fn. According to Bayes rule, the update of the
label certainty C(TP|An) can be calculated with Formula 3.1 (See Appendix A.1 for the details
of the derivation).

C(TP|A
n) =


p(TP)× fn

p(TP)× fn+p(TN )×(1− fn) , if n = 1 and An = {P, fn}

C(TP|A
n−1)× fn

C(TP|An−1)× fn+(1−C(TP|An−1))×(1− fn)
, if n > 1 and An = {P, fn},

(3.1)

where TP and TN are the true positive and negative label respectively. Formula 3.1 can be
applied directly when An is positive (i.e., An = {P, fn}); while for a negative answer, we can
transform it as An = {N, fn} = {P, (1 − fn)} such that Formula 3.1 is also applicable. In
addition, Formula 3.1 is for calculating the certainty of x to be positive. If C(TP|An) > 0.5, the
label of x is positive; otherwise, the label is negative and the certainty is 1 − C(TP|An). With
Formula 3.1, the label certainty of x can be updated easily by querying oracles repeatedly until
max(C(TP|An), 1 −C(TP|An)) is greater than or equal to c.

However, according to Formula 3.1, the certainty C(TP|An) is not monotonic (See appendix
A.2 for the proof). This can be explained intuitively. For example, in paper reviewing, if the
labels given by reviewers are alternating between positive and negative, the certainty may not
be able to reach the threshold c even many reviewers are requested. That is, it is possible that
the certainty dangles around and is always lower than c.

To guarantee that the threshold c can be reached with as few queries as possible, we will
propose an effective learning algorithm to select the best oracles to query.

3.3 BMO (Best-Multiple-Oracle) with C-Certainty
As the capability of each oracle varies in labeling different examples, the key issue for im-
proving the querying efficiency is to select the best oracle for every given example. However,

1This assumption is reasonable, as usually oracles can label examples more correctly than assigning labels
randomly.
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the varying capability makes it difficult to estimate the performance of an oracle in labeling a
given example, and more difficult than the case where the capability of each oracle is evenly-
distributed [22, 110].

3.3.1 Selecting the Best Oracle
How can we select the best oracle given that the noise levels are example-dependent? The basic
idea is that an oracle can probably label an example x with high confidence if it has labeled x j
confidently and x j is close to x (See Figure 3.1).

 

Oracle1: 0.9

Oracle1: 0.95

Oracle1: 0.85
Oracle2: 0.7

Oracle2: 0.85

Oracle2: 0.8

Oracle1: 0.6
Oracle2: 0.9

Labeled To be labeled

Oracle1 is likely 
to label it with 

high confidence 

Oracle2 is likely 
to label it with 

high confidence 

Figure 3.1: The basic idea for selecting the best oracle. The decimals in the figure indicate the
labeling confidence.

More specifically, we assume that each of the m oracle candidates (O1, · · · ,Om) has labeled
a set of examples Ei (1 ≤ i ≤ m). Eki (1 ≤ i ≤ m) is the set of k (k = 3 in our experiment)
nearest neighbors of x in Ei (1 ≤ i ≤ m). BMO chooses the oracle Oi such that the examples in
Eki are of the highest confidence. The potential confidence for each oracle in labeling x can be
calculated with Formula 3.2.

Pci =

1
k ×
∑k

j=1 f oi
x j

1 + 1
k ×
∑k

j=1 |x − x j|
, (3.2)

where x j ∈ Eki , f oi
x j is the confidence of oracle Oi in labeling x j, and |x − x j| is the Euclidean

distance between x j and x. The numerator of Formula 3.2 is the average confidence of the k
nearest neighbors of x. The last item in the denominator is the average distance, and the 1 is
added to prevent the denominator from being zero.

High confidence in labeling x’s nearest neighbors indicates that the oracle Oi will likely
label x with a high confidence. That is, BMO selects the oracle Oi if i = arg max

i
(Pc1 ,

· · · , Pci , · · · , Pcm). This strategy of selecting the best oracle is reasonable as the confidence
distribution (expertise level) of oracles is usually continuous, and does not change abruptly.
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3.3.2 Active Learning Process of BMO

BMO is a wrapper learning algorithm, and it treats the strategy of selecting examples to label
as a black box. Any existing query strategies in active learning, such as uncertainty sampling
[54], expected error reduction [76] and the density-weighted [87] method can be fit in easily.

At a high level, BMO works as follows. For an example xi (xi ∈ Eu) selected by an
example-selecting strategy (e.g.,uncertain sampling), BMO selects the best oracle among the
ones that have not been queried for xi yet to query, and updates the label certainty of xi with
Formula 3.1. This process repeats until the certainty meets the threshold c. Then BMO adds xi
into its labeled example set El. This labeling process continues until certain stopping criterion
is met.

More specifically, as usually active learning starts with a small set of initial data, BMO has
two learning phases: exploitation in initial training data and exploration in unlabeled data. As
noise in the initial training data may lead the future active learning process to a wrong track,
BMO starts with the exploitation phase.

• Exploitation in initial Data Given initial training data EI , two situations may be en-
countered. One is that only labels of examples are provided but without confidence.
BMO takes the leave-one-out strategy to check if more queries are needed for each ex-
ample. More specifically, for each example xi ∈ EI , BMO builds a classifier with the
set of examples except xi. If the current label of xi agrees with the prediction of the
classifier, BMO treats it as certain enough. Otherwise, BMO will select the best oracle
according to Section 3.3.1 to query and update the certainty with Formula 3.1 until the
certainty satisfies the given c, and then xi is added into labeled example set El (See Line
1 to Line 20 in Algorithm 2). The other situation is that the initial training data EI have
both labels and confidence. This is the same as exploring in unlabeled data which will
be introduced in the following except that one oracle has already been queried.

• Exploration in Unlabeled Data Given an unlabeled dataset Eu, an example xi (xi ∈ Eu)
can be selected by any example-selecting strategy (such as uncertain sampling). Then
BMO selects the best oracle Oi (Oi ∈ O1, · · · ,Om) according to Section 3.3.1, and posts
the query to it and updates the label certainty of xi with Formula 3.1 (See Line 21 to
Line 39 in Algorithm 2). This process repeats until the certainty is greater than or equal
to c. BMO updates its labeled example set El by adding in xi. This process repeats
until a given query budget is used up (such as, the predefined query budget, such as
50, 100, · · · , 500, is used up in our experiment).

By selecting the best oracle iteratively, BMO can improve the label certainty of a given
example to meet the threshold c with only a few queries (See Section 5.5). That is, BMO is
expected to get as many examples with guaranteed label quality as possible for a given query
budget, and the model built from the examples is expected to have better performance than
querying oracles randomly.

It is not trivial that our strategy will outperform other learning strategies, as the number of
distinct examples labeled would be much less, though each would have a higher ”quality”. In
the next subsection, we will empirically study the performances of BMO.
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Algorithm 2: BMO (Best Multiple Oracles)
Input: Initial training data set EI ; Unlabeled data: Eu; oracles: O; oracles queried: Oq;

threshold: c; queries budge: budget;
Output: labeled example set El
begin1

for each xi ∈ EI do2

//Exploitation in labeled data3

if budget > 0 then4

EI = Ei − xi5

Build a classifier with EI ∪ El;6

if label of xi , prediction given by the classifier then7

while certainty < c do8

for each Oi ∈ (O − Oq) do9

Pci ← Formula 3.2;10

end11

Om ← oracle with maximal Pc;12

certainty← update with Formula 3.1;13

Oq ← Oq ∪ Om;14

budget ← budget − 1;15

end16

end17

end18

El ← El ∪ xi;19

end20

while budget > 0 do21

//Exploration in unlabeled data22

xi ← selection with uncertain sampling (xi ∈ Eu);23

Oq ← null;24

certainty← 0;25

while certainty < c do26

for each Oi ∈ (O − Oq) do27

Pci ←Formula 3.2;28

end29

Om ← oracle with maximal Pc;30

certainty← update with Formula 3.1;31

Oq ← Oq ∪ Om;32

budget ← budget − 1;33

end34

El ← El ∪ xi;35

update the current model;36

end37

Return El;38

end39
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3.4 Experiments
In our experiment, to compare with BMO, we implement two other learning strategies. One is
Random selection of Multiple Oracles (RMO). Rather than selecting the best oracle in BMO,
RMO selects oracles randomly to query for a given example and repeats until the label certainty
is greater than or equal to c. The other strategy is Random selection of Single Oracle (RSO).
RSO queries oracle only once for each example without considering c. RSO essentially is the
traditional active learning algorithm.

As RSO only queries one oracle for each example, it is expected to have the most labeled
examples for a predefined query budget but with the highest noise level. To reduce the neg-
ative effect of noisy labels, we weight all labeled examples according to their label certainty
when building final models. To make all the three strategies comparable, we also use weight-
ing in BMO and RMO. In addition, all the three algorithms take uncertain sampling as the
example-selecting strategy and decision tree (J48 in WEKA [104]) as their base learners. The
implementation is based on the WEKA source code.

The experiment is conducted on UCI datasets [2] including abolone, anneal, cmc new,
credit, mushroom, spambase and splice, which are commonly used in the supervised learning
research. The number of attributes of the 7 datasets varies from 9 to 61 and the number of
examples varies from around 1,000 to 8,000. Each dataset is split into 70% for training and
30% for testing. The initial training dataset is of size 10, and with 20% - 30% noise in labels
and no confidence is given. In addition, as the number of oracles cannot be infinite in real
world, we only use 10 oracles for each dataset. If an example has been presented to all the
10 oracles, the label and the certainty obtained will be taken in directly. The threshold c is
predefined to be 0.8 and 0.9 respectively. The experimental results presented are the average
of 10 runs, and t-test results are of 95% confidence.

In our previous discussion, we consider the confidence given by an oracle as the true con-
fidence. However, in real life, oracles may overestimate or underestimate themselves inten-
tionally or unintentionally. If the confidence given by an oracle O does not equal the true
confidence, we call O an unfaithful oracle; otherwise, it is faithful. To observe the robustness
of our algorithm, we conduct our empirical studies with both faithful and unfaithful oracles2

in the following.

3.4.1 Results on Faithful Oracles
As no oracle is provided for the UCI datasets, we build 10 faithful oracles for each dataset.
Each oracle is generated as follows. Firstly, we select one example x randomly as an “expertise
center” and label it with the highest confidence. Then, to make the oracle faithful, we calculate
the Euclidean distance from each of the remaining examples to x, and assign them confidences
based on the distances. The further the distance is, the lower confidence the oracle has in
labeling the example. Noise is added into labels accordingly. Thus the oracle is faithful.

The confidence of an oracle in labeling examples is supposed to follow certain distribu-
tion. We choose three common distributions, linear, normal and mixture models of two normal

2Actually it is difficult to model the behaviors of unfaithful oracles with a large confidence deviation. In
our experiment, we show that our algorithm works well given unfaithful oracles slightly deviating from the true
confidence.
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distributions. Linear distribution assumes the confidence reduces linearly as the distance in-
creases. For normal distribution, the reduction of confidence follows the probability density
function f (x) = 1√

2πσ2
exp(− x2

2σ2 ) − 0.55. A mixture model of two normal distributions in-

dicates that the oracle has two “expertise centers” (see Figure 3.2). As mentioned earlier 10
oracles are generated for each dataset, and three of them follow the linear distribution, three
the normal distribution and four the mixture models of two normal distributions.
 

1 

0.55 
Expertise center 

Linear distribution 
1

0.55 
Expertise center 

Normal distribution 

1 

0.55 

Center 1 

Normal distribution 

Center 2 

 

 

1 

0.55 
Expertise center 

Linear distribution 
1

0.55 
Expertise center 

Normal distribution 

1 

0.55 

Center 1 

Normal distribution 

Center 2 

 

 

Mixture model 

Figure 3.2: Three distributions

Firstly, we present the prediction error rate of the models built with different query budgets.
Due to the similar results of different datasets, we only show the details of one dataset (anneal)
in Figure 3.3 and a summary of the comparison afterwards. Figure 3.3 shows the prediction
error rates of BMO, RMO and RSO for the threshold 0.8 (left) and 0.9 (right) respectively. The
x axis indicates the query budgets while the y axis represents the error rate on test data. On one
hand, as we expected that, for both thresholds 0.8 and 0.9, the error rate of BMO is much lower
than that of RMO and RSO for all different budgets, and the performances of the latter two are
similar. On the other hand, the curve of RMO when c = 0.8 is not as smooth as the other ones.

Secondly, why are the performances of the three learners different? It can be explained by
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Figure 3.3: Error rate on faithful oracles

two factors, the noise level and the number of examples. Due to similarity, we only show how
the two factors affect the performances through one dataset (anneal) when the query budget is
500 in Figure 3.4.
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 Figure 3.4: The number of examples and label quality of faithful oracles

Figure 3.4 shows that on average BMO only queries about 1.4 (c = 0.8) and 1.7 (c = 0.9)
oracles for each example; while RMO queries more oracles (1.7 and 2.0). That is, BMO obtains
more labeled examples than RMO for a given budget. Moreover, the examples labeled by BMO
have much higher label certainty than that by RMO3. On the other hand, the examples labeled
by RSO is much more noisy than BMO (i.e., the red portion is much larger). It is the noise
that deteriorates the performance of RSO. Thus, we can see clearly that BMO outperforms the
other two strategies because of its guaranteed label quality and the selection of the best oracles
to query.

By looking closely into the curves in Figure 3.3, we find that the curve of RMO when
c = 0.8 is not as smooth as the other ones. The reason is that RMO of c = 0.8 has fewer labeled
examples when compared to BMO and RSO of c = 0.8 and has more noise when compared to

3Some of the examples still have certainty lower than c due to the limited oracles in our experiment.
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Table 3.1: T-test results on 7 datasets with 10 different budgets
BMO vs. RMO BMO vs. RSO RMO vs. RSO
c=0.8 c=0.9 c=0.8 c=0.9 c=0.8 c=0.9

Win 43 51 40 42 0 9
Draw 27 19 30 38 70 51
Lose 0 0 0 0 0 10

that of c = 0.9. Fewer examples make the model learnt more sensitive to the quality of each
label; while the label quality of c = 0.8 is not high enough. Thus, the stability of RMO when
c = 0.8 is weakened.

Lastly, we will show the t-test results in terms of the error rate on all the seven UCI datasets.
As for each dataset 10 different query budgets are considered, the total times of t-test for each
group is 70. As shown in Table 3.1, BMO wins RMO 94 times out of 140 (c = 0.8 and c = 0.9)
and wins RSO 86 out of 140 without losing once. It is clear that BMO outperforms RMO and
RSO significantly.

In summary, by querying faithful oracles, c-certainty learning is able to guarantee the label
quality. Furthermore, the experimental results show that BMO can build a better model than
RMO by selecting the best oracles to query. In addition, the results of RSO illustrate that
weighting with the label quality may reduce the negative influence of noisy label but still its
effect is limited.

3.4.2 Results on Unfaithful Oracles
For various reasons, unfaithful oracles exist widely in real world. To present the robustness
of our learning algorithm, we build unfaithful oracles for extensive empirical studies. In this
experiment, unfaithful oracles are generated for each dataset by building models over 20%
of the examples. More specifically, to generate an unfaithful oracle, we randomly select one
example x as an “expertise center”, and sample examples around it. The closer an example xi
is to x, the higher the probability it will be sampled with. In this way, the oracle built on the
sampled examples can label the examples closer to x with higher confidences. The sampling
probability follows exactly the same distribution in Figure 3.2. For each data set, 10 oracles
are generated and three follow the linear distribution, three the normal distribution and four the
mixture models of two normal distributions.

As sampling rate declines with the increasing distance, the oracle built may fail to give
true confidence for the examples that are far from the “center”. As a result, the oracle is
unfaithful. That is, the oracles are unfaithful due to “insufficient knowledge” rather than “lying”
deliberately.

We run BMO, RMO and RSO on the seven UCI datasets and show the prediction error rates
and the number of labeled examples on one dataset (anneal) in Figure 3.5 and Figure 3.6 re-
spectively, and a summary on all the datasets afterwards. It is surprising that the performances
of BMO on unfaithful oracles are similar to that on faithful oracles. In particular, the error rate
of BMO is much less than that of RMO and RSO, and the latter two are similar. The examples
labeled by BMO are more than the number labeled by RMO. Furthermore, the label quality
of RMO is higher than that of both RMO and RSO, which is also similar to that on faithful
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Figure 3.5: Error rate on unfaithful oracles
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Figure 3.6: The number of examples and label quality of unfaithful oracles
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Table 3.2: T Test results for all datasets and budgets on unfaithful oracles.
BMO vs. RMO BMO vs. RSO RMO vs. RSO
c=0.8 c=0.9 c=0.8 c=0.9 c=0.8 c=0.9

Win 53 42 53 45 12 0
Draw 6 22 17 15 50 50
Lose 11 8 0 10 8 20

oracles.
The comparison results show clearly that BMO is robust for unfaithful oracles. The reason

is that BMO selects the best multiple oracles to query, and it is unlikely that all the best oracles
are unfaithful at the same time as our unfaithful oracles do not “lie” deliberately as mentioned.

Table 3.2 shows the t-test results on 10 different query budgets for all the seven UCI
datasets. We can see that BMO wins RMO 95 times out of 140 and wins RSO 98 out of
140, which indicates that BMO works significantly better than RMO and RSO under most of
the circumstances. However, BMO loses to RMO 19 times and RSO 10 times, which are dif-
ferent from the results on faithful oracles. Thus, even though BMO is robust, still it works
slightly worse on unfaithful oracles than on faithful ones.

In summary, BMO is robust for working with unfaithful oracles, even though its perfor-
mance may be reduced slightly. This property is crucial for the success of BMO in real-world
applications, as unfaithful oracles are ubiquitous.

3.5 Summary
Learning actively and aggressively is a paradigm that can be applied to many learning problems
in real applications. It allows learners to select examples actively to learn and its goal is to
learn a good model from as few labeled examples as possible. Traditional active learning with
uncertain sampling is under this paradigm. However, due to the labeling noise from oracles,
existing active learning algorithms cannot solve the problems under this paradigm well.

In this chapter, we extend the settings of the learning paradigm based on the fact that usu-
ally multiple oracles are available and most of them are able to provide not only labels but
also their confidences in the labels. According to the labels and confidences, we proposed c-
certainty learning to guarantee the label quality of every example to meet the given threshold
c. In addition, we allow the noise level to be example-dependent. To improve the query effi-
ciency, we propose the learning algorithm BMO to select the best oracles to query such that
the threshold c can be met with as few queries as possible.

As in real-world applications, oracles can be faithful or unfaithful, we conduct empirical
studies on both faithful and unfaithful oracles. The results show that BMO works robustly and
outperforms other active learning strategies significantly on both types of oracles, even though
its performance can be affected slightly by unfaithful oracles.
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Chapter 4

Learning Actively with
Conservative-Aggressive Tradeoff

Under the paradigm of learning actively and conservatively presented in Chapter 2, learners
always predict unlabeled examples with its model during the learning process. On the other
hand, in Chapter 3 learners always query oracles for labels under the paradigm of learning ac-
tively and aggressively. The two opposite paradigms use two totally different ways, predicting
and querying, respectively to obtain labels and work successfully for solving many real-world
learning problems.

However, the two ways for obtaining labels, making predictions and querying oracles, are
not mutual exclusive. Actually, they can be used together during the learning process and
complement each other in many applications. For example, when letters are sorted by using
OCR (optical character recognition) devices of the post office, if the hand-written zip codes are
ambiguous or too difficult to recognize, they will be passed to the oracles (human) for labels
(recognizing). However, if the OCR can predict accurately the hand-written zip codes, the letter
will be sorted and mailed to the recipient directly. If the prediction is not correct, the letter will
be returned and redelivered (cost or consequence of the wrong prediction). As another example,
a company is training an automatic online advertising system to predict which website will be
profitable to place advertisements. If the system is not sure whether it is suitable to advertise
on a website, the company can pay an oracle (expert) for the label; while if the system is
pretty certain that a website is profitable to advertise, then an advertisement slot can be bought
directly on the website. If the advertisement is clicked often, the label of the website is positive;
otherwise, it is negative and incurs cost as well.

In both examples above, the two actions, making prediction (e.g., directly mailing the letter
and buying an advertisement slot) and querying oracle (e.g., human and expert), contribute to
obtaining labels for different circumstances. Meanwhile the acquired labels can be given to the
learner (OCR or Ads system) for further training iteratively. The key issue is how to control the
iterative learning process and take correct actions (predicting or querying) for each example so
that the cost for obtaining labels can be minimized.

In this chapter, we propose a new paradigm of learning actively with conservative-aggressive
tradeoff for the type of problems discussed above. The settings for the paradigm are as follows.
Firstly, learners are allowed to select examples actively to learn and the labels of examples are
unknown. Secondly, to obtain the labels, two actions can be considered: making prediction

49
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(e.g., predicting mails by OCR directly) and querying oracle (e.g., asking human and expert).
Lastly, cost has to be paid for making wrong predictions or for querying oracles.

The goal for the paradigm is to build a good model by paying minimal cost for obtaining
labels (predicting and querying). To achieve this goal, each decision on choosing which action
to take has to be optimal during learning processes. Optimal decisions should depend on the
expected cost Ce (the production of the cost for misclassifying an example and the probability
that the mistake will happen) for making a wrong prediction and the cost for query an oracle
Cq. Given an example, if its Ce > Cq, the learner will choose to get the label by querying an
oracle; otherwise, the learner will choose to make prediction on it directly. The selection of the
two actions is optimal (i.e., obtaining the labels with minimal total cost) if the expected cost
Ce can always be estimated accurately.

However, the expected cost Ce usually is not accurate particularly in the beginning of the
learning process as the model is not good enough. As a result, wrong (nonoptimal) actions
are likely to be taken, and consequently high cost incurs. To tackle the problems under the
paradigm of learning actively with conservative-aggressive tradeoff, we propose a novel learn-
ing algorithm Decisive Active Learner (DAL). DAL always selects the example likely leading
to correct (optimal) actions and prefers the action that is expected to cost less during the learn-
ing process. The examples that will likely lead to wrong actions will be learned during the later
stage, as the learner may become more reliable (the probability is more accurate) and the action
taken will become more accurate with more example being learned. This work is submitted to
The IEEE International Conference on Data Mining (ICDM), 2012.

The rest of this chapter is organized as follows. In Section 4.1, we will review some related
work and discuss the difference with our work. In Section 4.2, we will introduce some prelimi-
nary for our problem setting and the new concept of decisive action. Section 4.3 will talk about
the proposed algorithm to select actions. In Section 4.4, we will experimentally compare our
algorithm with other typical learning algorithms. Summarization of the work in this chapter
will be presented in Section 4.5.

4.1 Related Works
The learning algorithm DAL under the paradigm of learning actively with conservative-aggressive
tradeoff is bridging between the traditional active learning and classification with rejection. It
is also similar to two-oracle setting in active learning. In this section, we will discuss the
similarities and differences with them.

As we mentioned in the previous section, traditional active learning has only one option
to obtain the true labels, which is to query oracle. Most of the previous works assume that
there exists at least one oracle who can provide the labels of the examples. Some previous
works [102, 88] assume that there is one perfect oracle who can correctly give all labels. Other
works [89, 95, 28]study assumes that the oracle is noisy and may mislabel the examples. Some
existing works [23, 107] explore the case where multiple oracles or labelers may contribute
to the quality of the labels. We can see in those works querying oracles (human experts or
labelers) has been regarded as the only approach to retrieve the true labels.

Under the paradigm proposed in this chapter, we can have two options (actions) to acquire
the true labels. Besides querying an oracle, the learner can make predictions directly and the
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true label will be revealed from the feedback (success or failure). Thus, we need to consider
not only the cost to query an oracle but also the cost of the wrong predictions. The best learning
strategy might not be always selecting the most informative (or uncertain) examples as in the
traditional active learning. Our goal is to explore the best learning sequence that minimizes the
total cost under this new setting.

For the classifiers with the reject option (also known as abstaining classifiers), the learner
can reject to make predictions on the uncertain examples. The decision when to reject to
make prediction also relies on the ratio between the misclassification cost and the reject cost.
However, some related works [33, 31, 51] study how to effectively reduce the misclassification
rate without considering the cost ratio. Others [68, 6] do take the misclassification cost and the
reject cost into consideration. Du and Ling [27] study this problem by considering different
misclassification costs of false positive and false negative, and solving them by using two types
of learning algorithms (thresholding and sampling). However, the existing works on classifiers
with reject option only study how to minimize the cost given a predictive model, while in DAL
we care more about the learning process that builds the predictive model with the minimal total
cost.

Under our paradigm, since making predictions can reveal the true labels, it can be regarded
as another oracle. However, our paradigm is substantially different from the two-oracle setting
[23] in active learning. In our paradigm, the “oracle” (the model for making predictions) is
updated with each new labeled example, while the two oracles in the two-oracle setting are
static.

4.2 Preliminary

Before presenting the details of DAL learning algorithm, we will formally define the learning
problem under the paradigm of learning actively with conservative-aggressive tradeoff, the
learning goal and the concepts to be used in detail.

4.2.1 Problem Definition

Given a set of labeled data L, a set of unlabeled data DU and a learner M learned from L,
M is allowed to select examples from DU , retrieve the labels from an oracle O and update
its model iteratively. Given an example in DU , its label can be obtained by taking one of the
two actions. The first action is to query the oracle O for its label by paying the querying cost
Cq. The second action is to make a prediction (positive or negative) on the example. The
consequence of the prediction will reveal the true label. If the prediction is wrong, we have to
pay the misclassification cost1 Cm. For each example with a posterior probability produced by
the learner, the action to take can be determined. The goal of this learning problem is to find a
proper learning sequence for the examples fromDU , such that the total cost is minimized.

1In this chapter, we only consider the case that the misclassification costs of false positive and false negative
are equal. In addition, the querying cost and misclassification cost are constant for different examples. It can be
easily extended to uneven costs of false positive and false negative and the instance-dependent cost.
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4.2.2 Choice of Actions
For an example x in DU , the selection of action depends on the costs for the two possible
actions. Given the posterior probability p(1|x) predicted by a learner, the expected misclassifi-
cation cost Ce will be P(1|x)×Cm if p(1|x) ∈ [0, 0.5], or (1− p(1|x))×Cm if p(1|x) ∈ (0.5, 1]. If
the expected misclassification cost Ce is less than the cost of querying an oracle Cq, we should
make the prediction directly; otherwise, we should query the oracle for the label.

Similarly, according to the inequality above we can easily derive a probability interval [α, β]
as shown in Figure 4.1) for given query cost Cq, misclassification cost Cm. The value of α and
β can be calculated with Formula 4.1. For the examples with the posterior probability falling in
the interval, the learner will choose to learn them by querying an oracle for its label; otherwise,
the learner will choose to make predictions on them directly. The interval is, in fact, the same
as the rejection interval in the classifiers with reject option [27, 6], where the learner can reject
to make prediction on an example when it is not certain about it. However, it does not make
predictions during the learning process.

 

Figure 4.1: Probability interval to query oracle.

{
α = Cq/Cm
β = 1 −Cq/Cm.

(4.1)

In addition, in Formula 4.1 we can see that α and β are symmetric2 of 0.5 and Figure 4.1
shows that the actions on the two sides of 0.5 are also symmetric. Thus, we can transform
Figure 4.1 into Figure 4.2. Instead of P(1|x), the horizontal axis in Figure 4.3 changes to
P(d|x). Here, d is the prediction (0 or 1) made by the learner, which depends on the higher
probability of P(0|x) and P(1|x). If P(0|x) > 0.5, then d = 0; otherwise, d = 1.

4.2.3 Action Boundary
In Figure 4.2, due to the symmetry, we only have one threshold β = 1 − Cq/Cm for P(d|x),
instead of two thresholds α and β in Figure 4.1. For examples with 0.5 ≤ P(d|x) < β we should
take the action of querying oracle, while for examples with β ≤ P(d|x) ≤ 1 we should take the
action of making prediction. We call the threshold β action boundary. The position of β is not
necessarily in the center of the axis, instead it relies on the cost of querying an oracle and the
misclassification cost. If an oracle is too expensive to query, the value 1−Cq/Cm will be small,
and thus β will be closer to 0.5. If the wrong prediction is costly, β will be closer to 1.

2α and β are symmetric of 0.5 as in this work we assume that the cost for false positive and false negative are
even. This work can be extend to uneven costs easily.
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Figure 4.2: Illustration for action boundary, and the horizontal axis represents P(d|x).

The correct choice of the actions depends on the accuracy of the posterior probability
P(d|x). Here, the accurate probability means that the probability is perfectly calibrated. Cal-
ibrated probability reflects the prediction uncertainty. For example, if the probability is cali-
brated, then for 100 examples with P(1|x) = 0.8, there will be 80 positive examples and 20
negative examples. Two factors will affect the accuracy of P(d|x): calibration of the classifier
and data sufficiency.

Different classifiers have different calibration behaviors. As reported previous works [65,
108], many learning algorithms, such as Naive Bayes, Decision Tree and SVM, can output
scores in addition to the labels given examples, but their scores are not calibrated. We need
some calibration methods to transform them into calibrated probabilities. On the other hand,
for some classifiers such as Bagged Decision Trees and Random Forest, their probabilities are
better calibrated. Good calibration of probability is critical for choosing the correct actions.

In addition, insufficient training data may also result in the poor accuracy of the probability,
since the learner does not observe enough examples. Thus, at the beginning of the learning pro-
cess, it is likely that the probability is not so accurate. However, the accuracy of the probability
can be improved by learning more labeled examples.

If a classifier can produce perfectly calibrated probability P(d|x), then the action taken on
each example in DU will always be the correct choice. However, due to the poor calibration
and data insufficiency, usually the posterior probability generated by the classifiers may be
inaccurate.

4.2.4 Indecisive and Decisive Actions
The inaccuracy of the posterior probability P(d|x) will easily lead to the wrong choice of the
actions, particularly in the boundary area close to β as shown in Figure 4.3. For the boundary
examples, the learner is not sure which action to take. Therefore, we call those boundary exam-
ples indecisive examples, and the actions taken on them indecisive actions. For the examples
far away from the action boundary β (approaching 0.5 or 1), the learner is more certain about
which action to take and the actions taken on them will be less likely to be mistaken. Hence,
we call those examples decisive examples, and their actions decisive actions3.

In fact, there is no clear threshold to distinguish decisive and indecisive actions. In Figure
4.3, we use the darkness to demonstrate the decisiveness of the actions. The darker the color
of the area, the less decisive the actions taken in the area. We can see that the decisiveness of
the actions gradually decreases from β to the two ends (0.5 or 1).

3In this paper, for each selected example an action will be taken, thus we regard taking actions and selecting
examples equivalently.
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Figure 4.3: Illustration for indecisive action.

Based on the decisiveness of action, in the next section, we will propose a new learning
algorithm to minimize the total cost.

4.3 Decisive Active Learner

The key issue to the learning problem defined in Section 4.2 is how to correctly determine
the action sequence on the examples in DU such that we can minimize the total cost. In the
following, we will present a novel learning algorithm Decisive Active Learning (DAL) to learn
examples from decisive to indecisive ones.

Algorithm 3: DAL
Input: Unlabeled DatasetDU; Training data: DT ; Initial model: M0
Output: Model: M and the total cost: C
begin1

itr = 0; //the first iteration2

C = 0;3

whileDU <> NULL do4

for each xi ∈ DU do5

Calculate the decisiveness of xi;6

end7

//Select the example that is expected to have the most decisive action8

Select the example xi with the highest decisiveness;9

Calculate the cost ci for labeling xi; //ci = Ce or Cq10

C ← C + ci;11

DT ← DT + xi;12

Update the current modelMitr withDT ;13

DU ← DU − xi;14

itr + +;15

end16

M←Mitr;17

ReturnM and C;18

end19
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4.3.1 DAL Algorithm
Decisive Active Learner (DAL) is an algorithm on how to determine the learning sequence of
examples in unlabeled dataset DU . The basic idea of DAL is that the decisive examples take
precedence to be selected for learning since the actions taken on them are more likely to be
correct, and the indecisive examples will be left for learning later (See Algorithm 3 for the
psuedocode). As we mentioned in Section 4.2.3, when more examples are observed by the
learner, the model built is expected to become more accurate, the indecisive examples may
become decisive, and consequently actions will be less likely to be mistaken.

More specifically, the decisive examples that DAL starts with have two different types:
examples (close to 0.5) to query oracle and examples (close to 1) to make predictions. Both of
the two types of examples are beneficial for the learner. The examples with probabilities close
to 0.5 can help the learner achieve high accuracy with few examples. Direct prediction on the
examples with probabilities close to 1 makes good use of the current learner and is likely to
obtain the true labels without paying any cost. Moreover, those (certain) examples can make
the learner more robust. Therefore, in addition to indecisive examples, DAL has to determine
the learning sequence of the two types of decisive example such that it can take the advantage
of learning them. Specifically, we design the learning sequence of DAL (illustrated in Figure
4.4) as follows.

 

Figure 4.4: Illustration of the learning process for the decisive active learner (DAL). DAL
learns the examples in the intervals (shadowed) alternately on the two sides of the action
boundary β, gradually approaching β. The actions are taken from the most decisive to the
most indecisive.
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1. Splitting probability interval: Each of the probability ranges [0.5, β) and [β, 1.0] is split
into k (k = 50 in our experiment) equal intervals. Each example in the unlabeled setDU
falls in an interval according to the posterior probability P(d|x) predicted by the current
learner. See the intervals in Figure 4.4.

2. Selecting the starting interval: The learner chooses the most decisive interval, which
is furthest from the action boundary β, as the starting interval for the learning. See the
shadowed interval in the top of Figure 4.4.

3. Learning in an interval: The current learner checks if there is any example in DU
located in the current interval. If yes, we select the most decisive example in the current
interval, acquire its label by taking the corresponding action and update the learner, and
then repeat step 3; otherwise, we proceed to step 4.

4. Alternating Interval: If all examples in DU are learned, we terminate the learning;
otherwise, the learner selects an interval on the other side of β as the next interval, and
then go back to step 3 to learn examples in it. See the process indicated by shadowed
intervals in Figure 4.4.

4.3.2 Splitting Probability Interval

What is the motivation for the probability intervals? Why not learn the most decisive examples
on the two sides of β alternately, instead of alternating the intervals? The problem is that if the
probability distribution on the unlabeled set is biased or skewed, the selected examples may not
be useful for the learner, and thus the resulting action sequence might not be optimal. Suppose
for most of the unlabeled examples the posterior probabilities P(d|x) are close to 1, and few
examples are close to 0.5 and even the most uncertain example is pretty far from 0.5 (say
P(d|x) = 0.6). In this case, if the learner is designed to learn an uncertain example every two
iterations, the learner may not benefit much from the uncertain example. However, alternation
of the probability intervals can avoid this problem. If there is no unlabeled examples falling
into the current interval, the learner will skip the interval, and select an interval on the other
side. Thus, our algorithm can guarantee that the most important (beneficial) examples for the
current learner will be learned.

4.3.3 Selecting the Starting Interval

From our algorithm, we start learning from the furthest interval from β. We can see the starting
interval depends on the position of β. The starting interval is actually critical to the performance
of the learner, since the learner can learn a number of examples in a probability interval and
we hope the actions taken on those examples are as correct as possible. Thus, we prefer to
learn the interval where examples are more decisive. Intuitively, the further the interval is from
the action boundary, the more likely the actions taken in it are correct. In Section 4.4.9, our
experiment further confirms that this selection method of the starting interval indeed reduces
the total cost in the learning process.
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4.3.4 Learning in an Interval
Learning all the examples in an interval may take multiple iterations. In each iteration, we only
select the most decisive example x in the current interval. Then if P(d|x) ∈ [0.5, β], then we
query the oracle for its label; otherwise, we make prediction on x. After the label is revealed,
we include it into the training set and update the learner, as well as all the posterior probabilities
of examples inDU . In the next iteration, the learner will select another example in the current
interval, based on the updated probabilities. If the interval is empty, the learner will alternate
to learn examples in the next interval.

4.3.5 Alternating Intervals
If there is no update on the learner, the probabilities P(d|x) of the examples in DU will not
change. In this case, we will alternate to learn examples in the next non-empty interval on the
other side of β. However, if the learner is updated, the probabilities predicted by the learner
may vary, and examples may fall into the previously empty intervals again. Hence, once the
learner is updated, we need to restart the alternation to recheck the previous intervals. Suppose
we finished learning the examples in the interval [0.50,0.52) and the probability P(d|x) of an
example x changed from 0.7 to 0.51 after the learner is updated, which makes the x very
informative to the current learner. If we skip this empty interval [0.50,0.52), we will lose the
chance to learn a useful example. Therefore, it is reasonable to revisit the previous intervals.

From the algorithm of DAL, it is clear that the learner always learns the most decisive
examples and attempts to make as few mistakes on the actions as possible. This feature ensures
that DAL achieves a good performance in terms of the total cost.

4.4 Experiment
In this section, we will empirically study the performance of DAL in terms of the total cost.
We will compare it with other four typical learners. Besides, we will experimentally explore
different factors that affect the performance of DAL.

4.4.1 Datasets
We will evaluate the performance of DAL on 10 UCI [2] datasets [2] with the size ranging from
898 to 32561. The detailed information of the 10 datasets is tabulated in Table 4.1.

4.4.2 Cost ratios
To be more comprehensive, our evaluation will be conducted under different cost ratios be-
tween the misclassification cost Cm and the oracle querying cost Cq. We will choose three
cost ratios, Cm/Cq = 2.5, Cm/Cq = 4 and Cm/Cq = 10. Since β = 1 − Cq/Cm, the
corresponding action boundary β are 0.6, 0.75 and 0.9. The reason we choose the mini-
mum cost ratio as 2.5 is that we should make sure Cm/Cq >= 2; otherwise, for any P(d|x),
Cm × (1 − P(d|x)) < 2 × Cq × 0.5 < Cq, meaning that making prediction is always better than
querying the oracle regardless of P(d|x).



www.manaraa.com

58 C 4. L A  C-A T

No.Att No.Ex Class dist
abalone 8 4177 2730/1447
adult-census 14 32561 24720/7841
anneal 39 898 214/684
credit-g 20 1000 700/300
diabetes 8 768 500/268
nursery 8 12960 4650/8310
sick 29 3772 3541/231
spambase 57 4601 2788/1813
splice 60 3190 1535/1655
waveform 40 5000 3345/1655

Table 4.1: 10 UCI datasets.

4.4.3 Other Learners
In our experiments, DAL will be compared with other four typical learners. We will give a
brief introduction of them in this subsection.

• Indecisive Active Learner: The first learner is named indecisive active learner (IAL),
which takes the opposite learning sequence of DAL. It always selects the most indecisive
examples in the learning process. Specifically, in each iteration, IAL always selects the
example x from the unlabeled setDU such that p(d|x) = minx∈U |p(d|x)−β|. The process
iterates until DU becomes empty. It can be expected that the learner will make many
mistakes on actions, especially at the beginning of the learning process.

• Aggressive Learner: Aggressive learners (AGG) are those that choose the most chal-
lenging example (i.e., the example that is least certain by the current learner), to learn
in each step. It is similar to uncertainty sampling [102] in active learning. It always
gives preference to the example that is closest to the decision boundary and queries the
oracle for its label. Specifically, in each iteration of the learning process, AGG always
selects the example x from the unlabeled setDU such that p(d|x) = minx∈U(p(d|x)−0.5).
The process iterates until DU becomes empty. Previous works [84] show that aggres-
sive learner (uncertainty sampling) can achieve high accuracy with few labeled examples
(low querying cost). However, if the cost of querying the oracle is very expensive, it will
be very costly for the learner to further learn from the examples. Besides, starting from
few examples, the aggressive learner may not be very robust, and sometimes as more
examples are learned the accuracy even decreases.

• Conservative Learner: In contrast to the aggressive learner, conservative learner
(CON) always exploits the data it can predict well and tries to make as few mistakes
on the predictions as possible. Thus, it prefers to learn the examples with the poste-
rior probability P(d|x) close to 1. Specifically, in each iteration of the learning pro-
cess, CON always selects the example x from the unlabeled set DU such that p(d|x) =
minx∈U(1− p(d|x)). The process iterates untilDU becomes empty. Conservative learner
has two obvious deficiencies. One is that the learning efficiency can be poor, as the ex-
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amples selected are homogeneous to the labeled examples. The second deficiency is that
if the misclassification cost is expensive, the total cost can be very high.

• Random Learner: Random learner (RND) does not have any bias in the learning pro-
cess. Each iteration it randomly selects one of the unlabeled example inDU . The process
iterates untilDU becomes empty.

In all the learners above, for the selected example x, if p(d|x) < β, the learner will query
the oracle for its label; otherwise, it will make prediction on x. Figure 4.5 illustrates the basic
learning process of the five learners.

 

Figure 4.5: Illustration of the learning process for five learners. DAL is the decisive active
learner. IAL is the indecisive active learner learner. AGG is the aggressive learner. CON is the
conservative learner. RND is the random learner.
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4.4.4 Base Classifier
In our experiment, we use bagged decision trees as the base classifier for all the five learners.
The reason is that bagged decision tree as reported by [65] can output well-calibrated posterior
probabilities, which makes the prediction more accurate. In Section 4.4.8, we will utilize
another base classifier Decision Tree and Naive Bayes to further explore the effect of calibration
on DAL.

4.4.5 Experimental Setting
For each of the 10 UCI [2] datasets in Table 4.1, we randomly select 100 examples as the
labeled set, and use it to train the initial classifier for each of the five learners. The rest of
the examples belong to the unlabeled set. For the five learners mentioned in Section 4.4.3,
we calculate the total cost (the misclassification cost and the cost of querying oracle) spent in
the entire learning process. The less the cost, the better the learner. We run the five learners
on the 10 datasets under the three cost ratios (Section 4.4.2) for 10 times. Friedman test and
Wilcoxon signed-rank test will be chosen to statistically test the difference of the total cost
among the five learners. It should be noted that after learning all the unlabeled examples, the
five learners should have the same predictive model, since the model is built on the same set of
examples.

4.4.6 Statistical Testing Methods
The total cost in each repeat can be affected by the initial split of the dataset, thus the cost may
have large variance in different repeats and even the data itself may not be normally distributed.
In this case, the Friedman test can be a reasonable choice for our statistical testing, since it
uses the ranks of the data rather than their raw values to calculate the statistic. Friedman test
has been widely used to test whether there is a statistically significant difference between a
group of values [17, 36]. If significant difference exists in the group, we still need a post-hoc
test on different pairs of groups to report their statistical difference. Wilcoxon signed-rank is
a commonly used post-hoc test following Friedman test [17, 36], thus we will use it in our
experiment.

4.4.7 Comparative Results
Table 4.2 demonstrates the average total costs of the five learners on the 10 UCI datasets under
three cost ratios. In order to evaluate the statistical difference, we also calculate the ranking
of the five learners based on Wilcoxon signed-rank test. The ranking is calculated by the
following steps. For each row in the table, we first sort the five learners by the average cost
ascending. Then we compare the learner with the smallest mean to the one with the largest
mean. If there is no significant difference, all the learners will be ranked as 1; otherwise, we
continue to compare the smallest mean with the second largest mean, until all the learners have
been compared or no significant difference is found. In the next round, we will compare the
second smallest mean with the largest mean, and repeat the same step. The process iterates
until all learners are ranked.
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Cost ra-
tio

DAL IAL AGG CON RND

abalone
2.5 889(1) 955(3) 1031(4) 891(1) 915(2)
4 1081(1) 1313(4) 1238(3) 1341(4) 1122(2)
10 1461(2) 1520(3) 1410(2) 1723(4) 1394(1)

adult-census
2.5 4803(1) 4904(2) 5511(3) 4813(1) 4918(2)
4 5893(1) 7178.8(4) 6887(3) 7102(4) 6228(2)
10 8097(1) 9228(3) 9121(2) 9199(2) 8323(1)

anneal
2.5 66(1) 75(2) 88(2) 58(1) 66(1)
4 102(1) 124(2) 124(2) 101(1) 95(1)
10 130(1) 210(3) 194(3) 167(2) 153(2)

credit-g
2.5 268(1) 282(2) 308(3) 271(1) 271(1)
4 331(1) 397(3) 350(2) 396(3) 342(2)
10 375(1) 400(2) 380(2) 445(3) 372(1)

diabetes
2.5 195(1) 204(2) 211(2) 194(1) 200(1)
4 234(1) 262(2) 241(1) 274(2) 241(1)
10 290(1) 294(1) 285(1) 309(1) 287(1)

nursery
2.5 273(1) 276(1) 385(3) 285(2) 282(2)
4 349(1) 436(3) 497(4) 391(2) 339(1)
10 610(1) 879(3) 802(2) 764(2) 562(1)

sick
2.5 84(1) 93(1) 93(1) 83(1) 86(1)
4 122(1) 143(2) 132(1) 137(2) 125(1)
10 217(1) 258(2) 254(2) 270(2) 210(1)

spambase
2.5 416(3) 364(1) 628(4) 389(2) 413(3)
4 554(1) 704(3) 891(4) 623(2) 589(1)
10 753(1) 1436(4) 1415(3) 1335(3) 976(2)

splice
2.5 391(2) 322(1) 625(3) 333(1) 337(1)
4 557(1) 673(3) 802(4) 535(2) 482(1)
10 688(1) 1094(3) 1077(3) 1055(3) 798(2)

waveform
2.5 640(1) 624(1) 940(2) 614(1) 616(1)
4 847(1) 959(2) 1101(3) 971(2) 840(1)
10 1039(1) 1503(3) 1341(2) 1952(4) 1084(1)

average rank

2.5 1.3 1.6 2.7 1.2 1.5
4 1 2.8 2.7 2.4 1.3
10 1.1 2.7 2.2 2.6 1.3
overall 1.1 2.4 2.5 2.1 1.4

Table 4.2: Statistical comparisons between the five learners in terms of the cost. Each cell
shows the average cost and its rank (in the bracket) of a specific learner on a dataset under
a cost ratio. The rank is calculated by a statistical test named Wilcoxon signed-rank. In the
bottom, the overall average rank and the average rank under the three cost ratios (2.5, 4 and
10) are presented.
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In Table 4.2, the rank of each learner is presented in the bracket next to the average total
cost. The four rows in the bottom of Table 4.2 present the average rank of the five learners
over all the 10 datasets under the cost ratio (2.5, 4 and 10) respectively, as well as the overall
average rank over 30 rows in the table. We can see clearly that DAL is top ranked in 27 out
of the total 30 comparisons and has the lowest average rank 1.1 over the 30 rows. It is evident
that DAL has the overall best performance in terms of the total cost.

Anneal: Cm/Cq = 2.5 Nursery: Cm/Cq = 2.5

0

50

100

150

200

250

300

350

400

450

500

DAL

IAL

AGG

CON

RND

iteration 

to
ta

l c
o

st
 

0

500

1000

1500

2000

2500

DAL

IAL

AGG

CON

RND

iteration 

to
ta

l c
o

st
 

Anneal: Cm/Cq = 4 Nursery: Cm/Cq = 4

0

100

200

300

400

500

600

700

DAL

IAL

AGG

CON

RND

iteration 

to
ta

l c
o

st
 

0

500

1000

1500

2000

2500

3000

DAL

IAL

AGG

CON

RND

iteration 

to
ta

l c
o

st
 

Anneal: Cm/Cq = 10 Nursery: Cm/Cq = 10

0

200

400

600

800

1000

1200

DAL

IAL

AGG

CON

RND

iteration 

to
ta

l c
o

st
 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

DAL

IAL

AGG

CON

RND

iteration 

to
ta

l c
o

st
 

Figure 4.6: Comparison of learning curves in terms of the total cost. Two datasets (anneal and
nursery) corresponds to the three rows from left to right respectively.

Itt is also interesting to note that the random learner (RND) has the 1st rank in 20 out of
the total 30 comparisons and an overall average rank (1.4) that follows closely DAL (1.1). It
seems contradictory to the previous works on active learning, where random learner usually
has the poorest performance compared to other active learners. However, in those cases, they
do not consider making predictions in the learning process and only consider the cost to query
the oracle. In our case, the random selection strategy of RND is likely to unbiasedly take
the two actions (making prediction and query oracle), which is similar to the action alternation
strategy of DAL. In addition, although some of the examples chosen by RND may be indecisive
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(close to β), the random distribution makes most of them relatively decisive. Thus, RND has a
reasonable performance in our scenario.

Theoretically, IAL is supposed to have the poorest performance since it always selects the
most indecisive actions and is expected to make many mistakes. However, we observe that it is
not exactly the case in Table 4.2. Overall, the average rank (2.4) of IAL is slightly better than
that (2.5) of AGG. In fact, under the cost ratio 4 and 10, IAL indeed has the lowest rank among
the five learners. The slight superiority of IAL to AGG is due to the fact that IAL performs
much better than AGG when the cost ratio is 2.5. Under the cost ratio 2.5, β (1-1/2.5=0.6) is
relatively close to 0.5. IAL starts learning from the examples with probability around 0.6 while
AGG from the examples with probability close to 0.5. Although the examples selected by IAL
are not as informative as those selected by AGG, those examples are still useful for the learner.
Furthermore, IAL can even save more costs by directly making predictions on the examples to
the right side of β, as the expected cost of making prediction on those examples is lower than
the cost of querying an oracle ((1 − P(d|x)) ×Cm < Cq, where P(d|x) > β).

From the average rank in Table 4.2, we can also observe that DAL is more likely to have
better performance when the cost ratio is high, as its average rank increases when cost ratio
becomes higher. It means when the misclassification cost is much higher than the querying
cost, it is safer and more desirable to use DAL as the learner.

In order to visualize the learning process, we also plot the learning curves of the five learn-
ers on three datasets (anneal and nursery), in Figure 4.6. The Y axis in Figure 4.6 is the average
value of the total cost over the 10 repeats. We can see the five learners behave differently in the
trend of the learning process.

In most of the cases, the cost of AGG increases sharply in the beginning of the learning
but maintains steady in the later stage. It is because it selects the uncertain examples first and
spends most of the cost on querying the oracle. Once it begins to make predictions, it becomes
very accurate and makes few mistakes, thus the total cost keeps stable in the later stage of
learning.

CON takes the opposite trend compared to AGG. At the initial stage, certain examples
(P(d|x) close 1) can be predicted well and thus the total cost grows slowly. However, after the
certain examples are learned, the poor predictive performance of CON tends to misclassify the
challenging examples, which contributes to the sharp increase of its total cost.

Generally, the curves of IAL are slightly under the curves of AGG. However, in some cases,
especially when the cost ratio is high (e.g., 10), the total cost of IAL becomes even higher than
that of AGG in the later stage. This observation is actually consistent with Table 4.2. IAL
starts to select the most indecisive examples, and thus it can be expected that IAL will make
many mistakes on the actions. It is the reason that the total cost of IAL increases rapidly in the
beginning of the learning process.

The curves of DAL are between the curves of AGG and CON, but it ends up with less total
cost in most of the cases. By making predictions on decisive examples, DAL saves more cost
compared to AGG. On the other hand, DAL spends extra cost on querying oracle, which leads
to its higher cost than CON in the beginning stage.

The curves of RND are basically along the diagonal. As we mentioned before, RND ran-
domly selects the examples, thus it does not bias any of the two actions in the learning process.
It is reasonable that RND learns steadily in the whole learning process, without any rapid
growth and plateau in the curve of the total cost.
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One may notice that, in Figure 4.6, the total costs of DAL are not always the lowest ones,
which seems contradictive with the previous results that DAL obtains labels with the lowest
cost. The reason is that the lowest cost of DAL is a statistical result. It does not indicate that
DAL requires the least labeling cost on every dataset and under every cost ratio.

4.4.8 The Effects of Calibration
As we mentioned in Section 4.2.3, the performance of DAL may be affected by the calibration
of the base classifier. In this subsection, we will study the performance of DAL under differ-
ent base classifiers with varied calibration capabilities. As reported by previous works [65],
decision tree and naive bayes have poor calibrated probabilities. We would like to see how
DAL behaves by using them as the base classifier compared to bagged decision tree. Table 4.3
tabulates the average costs of DAL on the 10 UCI datasets by using the bagged decision tree,
decision tree and naive bayes. The bold value(s) in each row of Table 4.3 mean that no others
are significantly better in that row by using Wilcoxon signed-rank test.

Cm/Cq = 2.5 Cm/Cq = 10

0

50

100

150

200

250

300

350

400
bagged decision tree
naïve bayes
decision tree

iteration 

to
ta

l c
o

st
 

0

200

400

600

800

1000

1200

1400

1600
bagged decision tree
naïve bayes
decision tree

iteration 

to
ta

l c
o

st
 

Figure 4.7: Comparison of learning curves of DAL by using different base classifiers on a
dataset (credit-g) under two cost ratios (2.5 and 10).

It is evident that by using bagged decision tree as the base classifier, DAL can achieve the
lowest cost on all the 10 UCI datasets. We plot their learning curves on a dataset (credit-g)
in Figure 4.7 under two different cost ratios (2.5 and 10). In the two subgraphs, the curves
of bagged decision tree are generally under the curves of the other two classifiers, especially
at the later stage of the learning process. It is due to the difference of calibration of the three
classifiers. As more examples are learned in the learning process, the calibrated classifier
(bagged decision tree) can produce more accurate probabilities than the uncalibrated classifiers
(decision tree and naive bayes). The accurate probabilities can help the learner choose the
correct actions for DAL, and thus reduce the total cost in the learning process. Hence, from
Table 4.3 and Figure 4.7, we arrive at the same conclusion. That is well-calibrated classifier is
crucial for the performance of DAL.

4.4.9 The Effects of Starting Interval
DAL adaptively selects the starting interval based on the cost ratio (from the side further away
from β). Does it really have significant effect? What if we select the starting interval in the
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Dataset CRatio BDT DT NB

abalone
2.5 889 1540 1877
4 1081 2296 2805
10 1461 4444 5763

adult-census
2.5 4803 6560 8088
4 5893 8735 11710
10 8097 17892 21355

anneal
2.5 66 61 107
4 102 113 146
10 130 185 222

credit-g
2.5 268 358 306
4 331 510 394
10 375 967 541

diabetes
2.5 195 234 223
4 234 345 280
10 290 478 377

nursery
2.5 273 406 535
4 349 608 808
10 610 1230 1731

sick
2.5 84 112 362
4 122 172 511
10 217 388 795

spambase
2.5 416 685 1338
4 554 1084 2142
10 753 2558 5456

splice
2.5 391 420 405
4 557 576 582
10 688 1257 865

waveform
2.5 640 1287 1019
4 847 2020 1546
10 1039 5265 3136

Table 4.3: Comparison of the total cost of DAL by using different base classifiers. In the
header, CRatio means cost ratio, BDT represents bagged decision tree, DT represents decision
tree and NB represents naive bayes. The bold value(s) in each row mean that no others are
significantly better in that row by using Wilcoxon signed-rank test.

opposite way? In the following, we will empirically explore this issue. We will modify the
original DAL so that it starts from the side closer to β. We name the modified version ODAL.

Table 4.4 presents the comparison between DAL and ODAL in terms of the total cost. The
bold value(s) in each row mean that no others are significantly better in that row by using
Wilcoxon signed-rank test. We can see, statistically, the original DAL achieves the best per-
formance in 29/30 cases, while ODAL only in 23/30 cases. Thus, by choosing starting interval
further from β, the learner is more likely to achieve lower cost.
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Dataset CRatio DAL ODAL

abalone
2.5 889 919
4 1081 1125
10 1461 1516

adult-census
2.5 4803 4788
4 5893 5976
10 8097 8457

anneal
2.5 66 74
4 102 106
10 130 158

credit-g
2.5 268 267
4 331 369
10 375 371

diabetes
2.5 195 195
4 234 262
10 290 275

nursery
2.5 273 248
4 349 385
10 610 723

sick
2.5 84 89
4 122 136
10 217 249

spambase
2.5 416 453
4 554 553
10 753 699

splice
2.5 391 425
4 557 530
10 688 680

waveform
2.5 640 775
4 847 879
10 1039.6 899

Table 4.4: Comparison of total cost with different interval-starting strategies. The bold value(s)
in each row mean that no others are significantly better in that row by using Wilcoxon signed-
rank test.

4.5 Summary
In this chapter, we proposed the paradigm of learning actively with aggressive-conservative
tradeoff, under which two actions, making prediction and querying oracle, are available for
obtaining labels. The goal of this learning paradigm is to minimize the total cost on the two
actions. We first defined what is decisive action and then proposed a novel learning algorithm
named decisive active learner (DAL), which always selects the most decisive examples and
attempts to make as few mistakes on the actions as possible in the learning process. In the
experiments, we demonstrated the outstanding performance of DAL in reducing the total cost,
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compared to four other typical learning strategies. Besides, we empirically analyze the sen-
sitivity of DAL to the calibration capability of the classifier, as well as starting point of the
learning process. The results showed that well-calibrated classifier can boost the performance
of DAL and the selection method of the starting point used in DAL helps to reduce the to-
tal cost. The proposed learning algorithm can be applied to various real-world applications,
particularly in the scenarios where true labels can be acquired after predictions.
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Chapter 5

Learning Actively with Minimal/Maximal
Effort

In Chapters 2, 3 and 4, three different new learning paradigms for active learning have been pro-
posed. Under each paradigm, novel active learning algorithms have been proposed to achieve
the learning goals. In this section, we propose another goal during the active learning process -
the “effort” of learning. The “effort” of active learning can correspond well to the actual effort
in human learning (see below), as well as the energy consumption in implementing the actual
active learning algorithms. This can be important when the learning algorithms actually run in
circuit boards [60, 45]. Algorithms using less energy generate less heat, and use less battery.
However, we understand that the actual energy consumption of any algorithm depends on many
factors (such as processor speed, the architecture of the chips, the types of transistors, circuit
boards and so on). As these factors are related to hardware and their values may vary from ma-
chine to machine, it is difficult to measure them. Thus, in this section, we will use the amount
of error to be corrected during learning, and the size of the learning models, to approximate the
effort, or the energy consumption of the algorithms. This is reasonable as many learning algo-
rithms, such as ANN [40], reduce their training error gradually and iteratively. Less error to
be corrected generally indicates fewer learning iterations, i.e., less energy consumption. Some
other learning algorithms, such as decision tree algorithms [70], build models gradually. A
decision tree of smaller size means splitting nodes fewer times, i.e., less energy consumption,
during the learning. See Sections 5.4 for details.

In education research of human learning, an effort has been considered when people learn
knowledge. The theory called the “i+1” learning has been proposed [49, 20]. It suggests that
human learns a small piece of new knowledge (“1”) based on a large body of previously learned
knowledge (“i”)[49]. For example, infants learn simple words and sentences first, and gradually
learn complex ones through repeated exposures from parents and care takers. Adults also learn
gradually from simple materials to complex ones through series of class or lectures. While
learning with minimal effort, we can expect that learning is slow but more stable. An opposite
type of learning is “maximum-effort learning”. Researchers have shown that by paying more or
maximal effort (in taking the most challenging problems, for example), learning can be faster
and more efficient, but less stable [105, 67].

As far as we know, little or no previous work has been done in studying the “effort” in
active learning. In this section, we propose a novel paradigm of learning actively with minimal

68
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or maximal effort. Under this paradigm, the labels of the examples to be learned are provided,
and the learners can select actively which examples to learn in sequence. The goal is to select
actively a proper sequence of examples to learn, such that the “effort” (to be defined as the
amount of errors to be corrected, or the model size; see Section 5.4) can be minimized, or
maximized (i.e., a model can be built fast).

Under the paradigm of learning actively with minimal/maximal effort, we propose two
novel learning algorithms to achieve the two goals. For active learning with minimal effort, we
propose a simple yet effective algorithm called S2C, which stands for “Simple to Complex”.
S2C always selects the current simplest example to learn. The “complexity” of an example is
defined in terms of the predictive accuracy of the example by the current model. The rationale
is clear: if the current model can predict the example accurately and correctly (that is why the
label of the example is given), there is virtually no need to learn and update the model. We
will show empirically in Section 5.5.1 that indeed, S2C does use much less effort compared to
other algorithms. We also show that S2C learns more slowly, and the learning process is very
stable (not volatile). See Sections 5.5.2 and 5.5.3 for details.

The S2C algorithm can be modified easily to become C2S (Complex to Simple). Opposite
to S2C, C2S always selects the most complex or challenging example to learn in the learning
process. We will show empirically in Section 5.5.1 that C2S does use much more effort com-
pared to other algorithms. We also show that C2S learns more quickly but the learning process
is unstable (volatile). See Sections 5.5.2 and 5.5.3 for details. The work of S2C and C2S is
published in Advances in Knowledge Discovery and Data Mining, 2010 [61].

The rest of this chapter is organized as follows. In Section 5.1, we will review some related
works. The learning algorithm for achieving minimal effort will be described in Section 5.2,
and the algorithm for achieving learning fast by taking maximal effort will be in Section 5.3.
In Section 5.4, we will introduce how the learning performances are measured. Experimental
results are presented in Section 5.5. We summarized the work of this chapter in Section 5.6.

5.1 Related Works
Learning from simple to complex gradually may look similar to incremental learning previ-
ously studied [52, 37], but they are very different. Incremental learning builds classification
models gradually based on the given data passively. However, the S2C learning algorithm
actively selects simple examples first to learn, and then complex ones. S2C is also different
from the traditional active learning [5, 15]. The learner in traditional active learning selects
the most informative unlabeled example and queries an oracle for its label. Then it rebuilds a
completely new model with all the labeled examples. The goal of active learning is to build a
good model with as few labeled examples as possible. S2C, on the other hand, is provided with
labeled examples, and is to select and learn the examples in the simple-to-complex sequence
(no oracle is required) and its goal is to minimize the learning effort1.

Ferr, et al. proposed delegating classifiers [31], and its main idea is divide-and-conquer.
The learner builds the first classifier with all the training examples, and delegates those exam-

1Reducing effort means less energy, e.g. power, that the algorithm needs to consume. IBM Re-
search shows that power consumption is a major problem in designing computers to simulate human brain.
http://spectrum.ieee.org/computing/hardware/ibm-unveils-a-new-brain-simulator.
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ples that cannot be predicted well (complex examples) to build delegating classifiers. How-
ever, it is difficult to determine the threshold for complex examples to be delegated. Another
potential issue is that the delegated examples probably are not sufficient which may affect the
reliability of the delegating classifiers. However, S2C learns one model from the examples in
a simple-to-complex manner. Thus S2C has neither threshold nor the difficulty of insufficient
examples.

A similar idea to S2C is curriculum learning [10]. It learns by assigning the easier examples
with higher weights first and then increasing the weights of the complex examples gradually.
The curriculum learning is based on the idea that human or animal learns much better when the
examples are organized in gradually more complex order [50]. The difficulty in this method
is that the so-called easier or more complex examples are given by human, which may be
unreasonable and infeasible. However, S2C is a learner-centric algorithm. It means that it is
the learner who decides what examples are simple or complex, which is much more realistic
and appropriate.

Lifelong learning [100] addresses the situations in which a learner faces a series of different
learning tasks providing the opportunity to transfer knowledge. Recently, a number of the
transfer knowledge researches have been done in different applications, such as, Web document
classification [34, 79], sentiment classification [12], reinforcement learning [99], etc. The
object of transfer learning is to transfer knowledge of other related but different source data
to the current learning data, such that a good model can be learned with fewer examples.
The simple-to-complex strategy in S2C is similar to transfer learning. The difference is that
it transfers knowledge that is learned from simple examples to complex examples, such that
complex ones can be learned easier. From this perspective, S2C belongs mostly to the vertical
transfer learning; while the traditional transfer learning is more similar to the horizontal transfer
learning in the psychology research area [73, 35].

Deep structure learning attempts to learn high level features by the composition of lower
level features [10]. It starts training on simple human-crafted features and tries to get abstract
high level features. One conceivable method is by training each layer one after the other [57,
53]. It is also very different from S2C, as S2C learns simple examples first and then complex
examples.

In addition, the query strategy of uncertain sampling [54] in active learning looks similar to
our C2S algorithm as both of them aims at achieving high efficiency in building a good model.
However, uncertain sampling selects the example that its posterior probability is close to 0.5;
while C2S selects the example that is predicted most differently from its true label.

5.2 S2C Learning
Under the paradigm of learning actively with minimal/maximal effort, we propose two learning
algorithms: S2C and C2S (C2S will be presented in Section 5.3). In this section, we will
introduce the simple and effective learning algorithm S2C, which actively selects the current
simplest example to learn. The “complexity” of an example is defined in terms of the predictive
accuracy of the example by the current model. The more accurate an example is predicted, the
less complex the example is (See Section 5.2.1 for details). The goal of S2C is to minimize the
effort for an active learner to build a model.
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Why the learning algorithm S2C is expected to minimize the learning effort? The rationale
behind is that learning is a gradual process of accumulating knowledge. Learning simple exam-
ples first may make the learning of complex examples easier, thus the whole learning process
becomes easier (less effort) and more reliable. (See Section 5.4 for evaluation metrics).

5.2.1 S2C Learning Algorithms
At a high level, S2C is a wrapper learning algorithm, and it can use any classifier that can
produce a refined class probability estimation (see later in this section for details) as its base
learner. Generally speaking, for each iteration, S2C selects the simplest example (i.e., the
example with minimal complexity) based on the current model and updates the model locally
with the selected example. The learning process continues until all examples have been learned.
The pseudocode for S2C is shown in Algorithm 4.

Algorithm 4: S2C
Input: DatasetD; Training data: DT ; Initial model: M0
Output: Model: M; Effort: E
begin1

itr = 0; //the first iteration2

E = 0;3

whileD <> NULL do4

for each xi ∈ D do5

Calculate the complexity of xi;6

end7

//Select the simplest example8

Select the example xi with minimal complexity;9

Calculate the effort ei for learning xi;10

E ← E + ei;11

Update the current modelMitr with the example xi;12

D ← D− xi;13

itr + +;14

end15

M←Mitr;16

ReturnM and E;17

end18

To implement Algorithm 4, there two key issues. The first one is how to calculate the
complexity for a given example (Line 5), such that the simplest (least complex) example can be
selected correctly. Here we propose an effective measurement which is the difference between
the true label and the prediction given by the current model. The smaller the difference, the
simpler the example is for the current model. For example, given one positive example x1
and one negative example x2, if the prediction given by the current model for x1 is positive
with probability 0.8 and for x2 negative with probability 0.9, then x2 will be simpler as its
difference (0.1) is less than x1’s (0.2). Thus, a base learner that can generate a refined class
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probability estimation is a requirement of S2C, as we mentioned before. Also the measurement
is consistent with human intuition about complexity: the less the surprise (i.e., difference on
error), the simpler (less complex) it is. The second issue is how to calculate the effort (Line 9),
and we will introduce it in Section 5.4.

In addition to the calculation of complexity, two more important issues deserve further
explanation. Firstly, how can S2C select the first simplest example before any model is built?
Secondly, how can S2C select the simplest example when tie happens?

The first issue of selecting the first simplest example can be tricky, as the current model
is empty. We take a simple yet effective strategy as follows. S2C scans over all the training
examples2 to pick up the most frequent example. If no example appears more than once in the
training set, then an example from the majority class will be chosen randomly.

The second issue, the tie-breaking strategy, can be crucial, if tie happens often when S2C
selects the simplest example. Indeed, for some algorithms, such as C4.5 [70] (the base learner
for S2C in this chapter), ties do happen often. This is because C4.5 predicts all examples falling
in the same leaf with the same prediction (i.e., same label and same probability estimation). For
this type of algorithms, it is necessary to design an effective tie-breaking strategy to improve
the performance of S2C further (See Section 5.2.2 for the details of the strategy on C4.5).

In the following, we will present how S2C works when taking the decision tree algorithm
C4.5 as its base learner.

5.2.2 S2C with the Decision Tree Algorithm

As we mentioned, S2C can take most of the classifiers as its base learner easily. In this work,
we choose one of the most popular classifiers C4.5 as the base learner. Originally, C4.5 builds
a global tree in “one shot”. However, S2C only provides C4.5 examples one by one in a
simple-to-complex manner, and consequently the decision tree model will be updated locally
and gradually. In the following, we will introduce how S2C works when taking C4.5 as its base
learner specifically.

As discussed, S2C selects the first example (before any model is built) from the majority
examples randomly (assume no repeated examples in datasets) for its base learner, C4.5, to
build the first tree model - only a one-leaf tree. Then based on the current tree, S2C selects the
simplest example which is predicted most correctly by the tree, then updates the tree with the
selected example. This selecting-and-updating process iterates until all the training examples
are learned.

However, as mentioned, a tie can occur often in decision trees, because a tree returns the
label prediction and probability of an example according to the numbers of the positive and
negative examples in the node that the example falls in. Thus, two different types of tie may
occur when S2C selects the simplest example. One is that those examples that fall into the
same leaf node. The other one is that those examples that fall into different nodes but have
the same probability estimation. S2C could solve these tie problems by selecting one example
randomly. However, to improve the performance further, we design better strategies to judge

2We understand that it takes effort to scan over examples for selecting the simplest example. However, com-
paring to the effort for training models, the scanning effort is much less. Thus, in this chapter we will not consider
the scanning effort.
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which of the equally simple examples is simpler than the others. According to the types of tie,
we propose two effective tie-breaking strategies as follows.

The first strategy is for breaking the tie happening in the same leaf. In this situation, the
equally simple examples belong to one class, say positive. The simplest positive example
should be far away from any negative examples. Accordingly S2C should choose the example
that has the furthest distance to its closest negative example comparing to other equally simple
ones. More specifically, S2C calculates the Euclidean distance for each equally simple positive
example to all the negative examples. It records the closest distance for each positive example,
and selects the example having the greatest distance as shown in Formula 5.1.

xi = arg max
i

(min
j

(di j)) 0 ≤ i < n1; 0 ≤ j < n0 (5.1)

where, di j is the Euclidean distance from example xi to x j, xi and x j belongs to positive and
negative respectively, n1 is the number of the equally simple examples and n0 is the number of
the negative training examples.

The second tie-breaking strategy is for breaking the ties among the examples that fall in
different leaves but have the same probability estimation. Two factors can be considered for
this circumstance. One is the number of the examples in the leaves where tie happens. In-
tuitively, the more examples a leaf has, the more reliable the leaf is in terms of probability
estimation. For example, if two positive examples fall into two positive leaves, say, A and B,
and A has 9 positive examples and 1 negative, and B has 18 positive examples and 2 negative,
the predictions for the two examples would be tied. However, B should be preferred over A
when breaking this tie because B is more reliable. The other factor is the depth of the leaf in
the tree. Intuitively the closer a leaf is to the root, the more preferred the example that falls
in the leaf is. For example, if a leaf C is on the first level and D is on the fifth level, and
both C and D have, say, 9 positive examples and 1 negative, the example that falls in C should
take precedence over the one that falls in D, since only one attribute is needed to predict its
label. Accordingly, the preference of an example should be proportional to the first factor and
inversely proportional to the second factor. More specifically, we combine the two factors as
shown in Formula 5.2 for calculating the “Preference” for each equally simple example.

Pre f erence =
1 + N1−N0

Nroot

2
∗

1
Lpath

(5.2)

where, N1 and N0 are the numbers of the positive and negative examples respectively in the
leaf node that xi falls in, Nroot is the number of the examples in the root node, and Lpath is the
length from the root to the leaf that xi falls in.

In Formula 5.2, the value of
1+

N1−N0
Nroot
2 corresponds to the first factor we discussed. It

indicates how positive xi is. If N1 = N0, the value will be 1/2; if N1 is very small, its value
will be close to zero (more negative); otherwise, it will be close to 1 (more positive). 1/Lpath
corresponds to the second factor. The closer a leaf is to its root, the more preferred the example
is. With Formula 5.2, S2C selects the example that has the maximal value of Pre f erence.

In addition the tie-breaking strategy, one more issue, how to update the decision tree, de-
serves further explanation. To minimize the learning effort, the decision tree in S2C is updated
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locally and gradually. Particularly, S2C only splits the fringe node if needed when updating
the current tree model. That is to say, if an example agrees with the fringe node it enters, S2C
will not change the tree structure; otherwise it will split the fringe node according to the tradi-
tional C4.5 algorithm. This fringe-node-split strategy is expected to reduce the learning effort
effectively.

After presenting the learning algorithm S2C for achieving the goal of minimizing the learn-
ing effort, in the following, we will introduce the other algorithm C2S which aims at learning
a good model fast by taking maximal effort.

5.3 C2S Learning

C2S is an opposite learning strategy to S2C. At a high level, C2S is different from S2C on two
key issues. One is that C2S considers the example that its label prediction is the most different
from the true label as the most informative example, and learns it preferentially. The other one
is that C2S rebuilds its model after selecting one new example, instead of S2C which updates
its model locally. The reason is that the goal of C2S is to learn a good model fast by taking
maximal effort, and intuitively the model being rebuilt is more optimal and requires more effort
comparing to S2C.

More specifically, C2S works in the process as follows. Firstly, it builds its first model with
one random majority example. Then C2S selects the example that its label prediction given by
the current model is the most different from the true label, i.e., the most complex example, and
rebuilds a new model with all the selected examples. C2S works in this way iteratively until all
the examples are processed.

However, when C2S selects the most complex example, the two types of ties in S2C can
also happen for the same reason. For the first type, i.e., the tie happening among the examples
in the same decision tree leaf, we use the Euclidean distance as a heuristic function to break
the tie. The basic idea is that the most complex negative (positive) example should be close to
positive (negative) examples. Particularly, we modify Formula 5.1 and select the most complex
example xi if i = arg min

i
(min

j
(di j)), where x j is the examples having the opposite class to

xi, and di j is the Euclidean distance between xi and x j. For the second type, i.e., the tie
happening among the examples in different decision tree leaves, we prefer the example having
more accurate posterior probability and closer to the root of the decision tree. That is, Formula
5.2 in Section 5.2.2 can be used directly to select the most complex example for breaking this
type of tie.

The selection of the most complex example indicates that C2S is likely to take the most
effort to learn the examples. As the complex examples are very informative, the current model
is expected to be improved fast. That is, C2S is expected to learn a good model fast by taking
maximal effort.

After introducing the two learning algorithm, S2C and C2S, the key issue is how to measure
their performances. In the following we will address the measurements used for the comparison
among the learning algorithms.
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5.4 Measurements
In this subsection, we will discuss how to evaluate the performances of the learning algorithms
under the paradigm of learning actively with minimal/maximal effort. Considering the learning
goals and the stability of the learning behavior, we present three measurements including effort,
learning efficiency and volatility.

The first measurement effort in active learning indicates how much work a learner has to do
to learn certain examples. Intuitively it corresponds to the energy consumption in implementing
the actual active learning algorithms, and the energy consumption depends on many factors,
such as processor speed, the architecture of the chips, the types of transistors, circuit boards
and so on. It is difficult to calculate the effort directly due to the many factors. In this work, we
choose two different approaches, error-based effort and size-based effort, to reflect the effort
indirectly.

• Error-based effort is using the prediction rate to approximate the effort. Here we provide
the details of how to evaluate the error-based effort for tree-based learning algorithms.
For a decision tree, the prediction error of the current tree Ti for a positive example xi is
(1 − p(1|xi)), where p(1|xi) is calculated by k/n. k is the number of the positive examples
and n the total number of the examples in the node that xi falls in. The error-based effort
is essentially the same as the measurement for selecting the simplest example mentioned
in Section 5.2.1. If an example is the simplest one for a model, the model will take the
least effort to learn it.

• Size-based effort reflects the size of the model being built. Usually the larger the size of
a model, the more effort the model needs to take. For a decision tree Ti, the size-based
effort can be the number of the nodes in Ti. The more nodes in a tree, the more size-based
effort is needed to build the tree.

It is reasonable for approximating the learning effort with the two indirect approaches,
error-based effort and size-based effort, as many learning algorithms attempt to reduce the
training error (such as ANN), or to build small models (such as decision tree algorithms) during
the learning. In addition, the two indirect approaches are good and universal to use, because
they are independent of hardwares or other factors, and the learning effort can be calculated
easily for learning algorithms.

The second measurement, learning efficiency, is also very important. It describes the num-
ber of examples a learner needs to build a good model, i.e., a model with low predictive error
rate. The higher the learning efficiency, the fewer the examples are needed. For example, given
two learners A and B, if A needs 100 examples to build a model with 0.1 predictive error rate
and B needs 120 examples to reach the same error rate, we say A has higher learning efficiency
than B.

The last measurement, volatility, is important and it is used to evaluate how stable (volatile)
a learner’s performance is. It is the average of the standard deviation of the predictive error rate
for all of the models built during the learning process. Accordingly it reflects the varying range
of the error rate of a learner from different runs. If the error rate (accuracy) of a learner varies
greatly from different runs, the volatility will be high. To calculate the volatility, an algorithm
has to run k times on one dataset. More specifically, when we apply an algorithm on a dataset
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having n examples, we will have n models3 Mi (0 < i <= n) in total during the process of
learning the n examples. For each Mi, we have a prediction error rate, Ei (0 < i <= n). If we
run the algorithm on the dataset for k times, and then we will have n × k models Mi j with the
predictive error rate Ei j (0 < i <= n, 0 < j <= k). Then we calculate the standard deviation S i
(0 < i <= n) of Ei j (0 < j <= k). Finally, we get the volatility by averaging all the value of S i
(0 < i <= n).

After presenting the three measurements, effort (error-based and size-based effort), learning
efficiency and volatility, we will empirically study the performances of S2C and C2S in the
following section.

5.5 Experiments

To compare with S2C and C2S, we also implement a benchmark learning strategy, called Ran-
dom, which randomly selects examples from a given dataset, and rebuilds a new model with all
selected examples 4. This learning process repeats until certain stopping criterion is met. To
make the three learning algorithms (S2C, C2S and Random) comparable, they all take C4.5 as
the base learner.

The experiments are conducted on 10 UCI [2] datasets including anneal, autos, breast-
cancer, colic, diabetes, ecoli, glass, heart-h, sonar and vote, which are commonly used in the
supervised learning research area. Originally, autos and glass are of multi-class. However, to
compare with the other binary-class datasets, we transform them to binary-class by keeping the
majority class and merging all the other classes. The three learning strategies, S2C, Random
and C2S are implemented based on the WEKA [104] source code. In the experiments, 10-fold
cross validation is used and the t-test results are of 95% confidence.

5.5.1 Comparison of Effort

As discussed in Section 5.4, we are concerned with two kinds of effort, the error-based effort
and the size-based effort. The error-based effort on the whole training set is the sum of the error
when a learner processes and learns every training example. Similarly, the size-based effort on
the whole training set is the sum of the tree nodes built during the whole learning process.

The experiment is conducted on all the 10 datasets to compare the error-based effort among
S2C, Random and C2S. The average of error-based effort of the 5 runs on each dataset is
shown in the upper part of Table 5.1. On average Random and C2S take about 1.3 times
and 2 times as much error-based effort as S2C does respectively. To compare the error-based
effort statistically, we also conduct t-test among the three algorithms, and the results show that
S2C takes significant less error-based effort than Random on 9 datasets out of 10 and ties with
Random on only one dataset. On the other hand, the error-based effort C2S takes is significantly
more than S2C and Random on all of the 10 datasets.

3For easy description, here we assume that the model will be updated or rebuilt every time when a new example
is taken in.

4We may also use ID5 [103], an incremental version of C4.5 to update the tree. However, it is shown [103]
that ID5 produces identical tree as C4.5; thus we use C4.5 on the current training dataset directly.
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anneal auto breast-
cancer

colic diabe-
tes

ecoli glass heart-
h

sonar vote

Average Error-based Effort
S2C 6.9 7.6 10.0 16.0 41.0 7.0 11.6 13.3 12.5 7.1
Rnd 7.1 10.5 12.0 22.0 59.0 8.0 16.0 20.3 16.2 9.0
C2S 23.7 14.5 23.0 30 73.5 19.3 20.1 22.3 21.4 15.9

Average Size-based Effort
S2C 3357 1198 3141 2841 21157 1478 1470 1792 2711 465
Rnd 14747 2937 12163 7482 49042 4399 4309 4665 3824 1034
C2S 51327 7427 27501 14019 95623 12057 7343 9055 10107 3721

Table 5.1: Comparison of error-based effort and size-based effort. In the table, Rnd stands for
Random.

In addition to the error-based effort, we also show the average of size-based effort of the
5 runs on each dataset in the lower part of Table 5.1. On average, Random and C2S take
about 2.6 times and 6 times as much size-based effort as S2C does. Furthermore, the t-test
results show that statistically S2C takes significantly less effort than Random and C2S on all
the 10 datasets without exception; while C2S takes the most size-based effort among the three
algorithms. The reason is that S2C updates tree locally instead of Random and C2S rebuild
trees. C2C takes even more the size-based effort than Random, because it prefers the examples
that are different from the prediction of the current model, and consequently the tree model
will have more nodes, i.e., more size-based effort.

The experimental results have shown that S2C does take the least error-based and size-
based effort to learn a model comparing to Random and C2S. It is evident that learning simple
examples first can reduce the effort for learning the complex examples during the later stage,
and consequently the total cost is minimized. Opposite to S2C, the results show that C2S
takes the most effort for learning the models. Does the maximal effort result in high learning
efficiency?

5.5.2 Comparison of Learning Efficiency
To confirm the expectation that C2S can learn a model with higher efficiency (i.e., learn a good
model with fewer examples), we present the average results of learning efficiency in Figure 5.1
(only four datasets are shown due to similar results). The x axis is the number of examples
being learned and the y axis is the average predictive error rate of the models built from the
corresponding examples. It shows clearly that the error rate of C2S reduces the fastest with
increasing the number examples learned. This is because C2S takes the most effort to learn
the most complex example, i.e., the example that its prediction is the most different from the
current model, and consequently the current model can be improved faster than Random and
S2C. To the opposite of C2S, S2C has the lowest learning efficiency in learning the models.
This is because it prefers to learn the simplest example which is homogeneous with the current
model and cannot improve the model much.

Meanwhile, we notice that the final error rate of S2C is slightly higher than Random and
C2S. The reason is that S2C updates its model locally which is not as optimal as the models
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Figure 5.1: Learning efficiency.

that are rebuilt by Random and C2S with all selected examples. Further studies on how to
improve the error rate of S2C will be discussed in Section 5.5.4.

5.5.3 Comparison of Volatility

Volatility indicates the stability of the prediction error rate from different runs as mentioned in
Section 5.4. To compare the volatility, we run each algorithm on each dataset for 5 times and
calculate the standard deviation of the error rate.

We present the volatility of S2C, Random and C2S on each dataset in Table 5.2. The
volatility of S2C is almost 0 on all the datasets. Random is much more volatile than S2C, and
C2S is about 3 times as volatile as Random. It is clear that S2C is the most stable among the
three algorithms. The reason is that, for the same iteration, the simplest examples S2C takes in
for different runs may different, but they do not change the current model much. Consequently
the predictive error rate keeps relatively stable, i.e., low volatility. On the other hand, the most
complex examples selected in C2S may change the current model by a wide range, and the
predictive error rate varies accordingly, i.e., high volatility.

In addition, we show the stability of the error rate during the learning process in Figure
5.2. Due to similar results, only the details of the two datasets, colic and heart-h are presented.
The x axis indicates the iterations of updating the trees and the y axis is the one-run predictive
error rate of the model built in the corresponding iteration. As S2C takes in all the examples of
majority class first, the process of building trees actually starts from taking in the first minority
example, and consequently its update iterations are much fewer than that of Random and C2S.
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anneal auto breast-
cancer

colic diabe-
tes

ecoli glass heart-
h

sonar vote

S2C 6E-7 .0 2E-8 3E-6 .0 1E-8 .0 5E-7 4E-6 6E-6
Rnd .011 .032 .016 .003 .024 .039 .039 .032 .067 .020
C2S .030 .051 .012 .025 .027 .023 .024 .028 .068 .071

Table 5.2: The comparison of volatility among the three learning algorithms. In the table, Rnd
stands for Random.

From Figure 5.2, we can see clearly that S2C decreases more steadily than Random and C2S
with an increasing number of training examples. This is also because the simplest example
that S2C takes in does not change the model much and results in the steady reduce of error
reduction. However, one might notice that the error rate of C2S on one run does not reduces as
fast as the average error rate as we show in Section 5.5.2. It is also evident that the volatility of
S2C is high, i.e., large variation of S2C on error rate from different runs.

colic heart-h

Figure 5.2: The error rate curve vs. iterations of updating models.

In summary, S2C does learn models with the minimal effort but with the lowest learning
efficiency; while C2S does learn models with the highest efficiency by taking the maximal
effort. In addition, the learning process of S2C is stable; while the process of C2S is volatile.

5.5.4 Reducing the Error Rate of S2C Further

In Section 5.5.2, we have noticed that the predictive error rate of the models built by S2C
is slightly higher than C2S and Random. To find out whether the difference is statistically
significant or not, we conduct t-test on the 10 datasets, and the results show that S2C is worse
than C2S and Random on some datasets. More specifically, S2C ties with Random and C2S
on 7 datasets, but loses on 3 datasets. The results are shown in the upper part of Table 5.3.
The reason is that S2C only updates the current tree model at its fringe when the new simplest
example is selected. It is extremely local and myopic. On the other hand, Random and C2S
rebuild “global” trees with all the selected examples, and the final tree is built on the whole
dataset. The “global” trees are expected to be optimal.
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anneal auto breast-
cancer

colic diabe-
tes

ecoli glass heart-
h

sonar vote

S2C vs. Rnd L L T T T L T T T T
Rnd vs. C2S T T T T T T T T T T
C2S vs. S2C W W T T T W T T T T

K = 10
S2C vs. Rnd L T T T T T T T T T
Rnd vs. C2S T T T T T T T T T T
C2S vs. S2C W T T T T T T T T T

Table 5.3: The t-test results on error rate (L: lose; T: tie; W: win). In the table, Rnd stands for
Random.

To avoid the greedy updating strategy of S2C without increasing the effort too much, we
design a “mini-review” strategy. The strategy is that after learning K examples, S2C will
“review” them and use them together to expand the fringe of the tree. This “mini-review”
process is similar to the summarizing process in human learning. The lower part of Table 5.3
shows the experimental results of the 10 datasets when K=10. It shows that S2C has almost
the same low error rate as the “global” tree of Random and C2S.

In summary, the experimental results confirm our expectation that S2C takes minimal effort
to learn a model with lowest learning efficiency; while C2S takes maximal effort to learning
a model with the highest efficiency. Furthermore, the learning process of S2C is more stable
than C2S. In addition, with our “mini-review” strategy, S2C can work as well as the global
algorithm Random and C2S in terms of the predictive error rate. Thus, we can conclude that
S2C and C2S have their own advantages and disadvantages, and the determination of using
S2C or C2S depends on the learning goal in real applications.

5.6 Summary
In this chapter, to study the learning effort of active learning, we present the paradigm of
learning actively with minimal/maximal effort. Under this paradigm, we propose two learning
algorithms. One is S2C for achieving the goal of learning a model with minimal effort, and the
other one is C2S for the goal of learning a model fast with maximal effort. S2C prefers to learn
the simplest examples and leaves the complex example to learn during the later stage. C2S
is opposite to S2C and prefers taking maximal effort to learn the most complex example first
such that a good model can be built fast. Experimental results show that S2C does take much
less effort to learn a model than Random and C2S, and reaches very similar low error rate.
On the other hand, C2S can learn a good model fast by taking maximal effort. Furthermore,
the learning process of S2C is much more stable (less volatile) than that of Random and C2S.
As S2C and C2S have different advantages and disadvantages, they can be applied to different
learning problems in real-world applications.
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Chapter 6

Conclusions and Future Work

In this chapter, first of all we will summarize the work and the contributions in this thesis. Then
we will discuss our future work.

6.1 Conclusion
Traditionally learners in active learning focus on the final model learned and the number of
labeled examples needed for learning a good model. In addition to the goals of traditional active
learning, we focus on controlling the learning process, i.e., the sequence of examples selected
to learn, to achieve four different goals: minimizing the number of mistakes, maximizing the
learning efficiency, minimizing the learning effort and maximizing the learning effort. These
goals are common and important in machine learning.

To achieve the goals, we addressed four new learning paradigms in this thesis, and un-
der each paradigm we proposed a novel and efficient learning algorithm to solve the related
learning problems.

In Chapter 2, we proposed the paradigm of learning actively and conservatively, and to
solve the learning problems under the paradigm we further proposed the learning algorithm
MCL. More specifically,

1. The paradigm of learning actively and conservatively allows learners to select unlabeled
examples actively to predict their labels and the true label will be revealed after each pre-
diction. Its goal is to minimize the number of mistakes in predicting unlabeled examples
during the learning process.

2. To minimize the number of mistakes, MCL is proposed and its basic idea is to repeat-
edly select the next unlabeled example that can be predicted by the learner with the
highest certainty to predict. This work of MCL and its application on Zoombinis game
is published on Proceedings of International Conference on Artificial Intelligence and
Education (ICAIE), 2010 [63].

3. According to various real-world applications, we further implemented two types of MCL:
MCL-b and MCL-1. In MCL-b, a learner must select and predict all of the remaining
examples as either positive or negative classes, and its goal is to minimize the number of
mistakes in predicting the examples of both classes.

81
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4. In MCL-1, a learner only needs to select and predict one class of examples. The goal
is to retrieve the examples of the class that we care about. The work of MCL-b and
MCL-1 is published on The 7th International conference on Advanced Data Mining and
Applications (ADMA’11) [62].

5. The empirical studies show that MCL-b does reduce the number of mistakes on the edu-
cational game Zoombinis and UCI datasets, and MCL-1 also can retrieve more positive
examples on UCI datasets and a marketing dataset.

In Chapter 3, we proposed the paradigm of learning actively and aggressively, and the
learning algorithms c-certainty learning and BMO to solve the learning problems under this
paradigm. More specifically,

1. The paradigm of learning actively and aggressively allows that multiple imperfect ora-
cles are available for returning both labels and confidences, and that the noise level in
oracles is example-dependent. Its goal is to learn a good model with fewer queries by
guaranteeing label quality.

2. To guarantee the label quality, c-certainty learning is proposed and its learner assesses
the quality of the label of an example every time after obtaining a response from an
oracle. If the label quality is higher than or equal to a given threshold c, the example and
its label will be added to the labeled data; otherwise, more oracles will be queried.

3. Given the noise level of each oracle to be example-dependent, BMO is proposed to select
the best oracles to query for each given example. With BMO, fewer queries on average
are expected for a label to meet the given threshold c.

4. Empirical studies are conducted on both faithful and unfaithful oracles. The results show
that BMO wins other learning strategies in most of the cases for both faithful and un-
faithful oracles. The work of c-certainty learning and BMO is published in The 16th
Pacific-Asia Conference on Knowledge Discovery and Data Mining. May, 2012 [64].

In Chapter 4, we proposed the paradigm of learning actively with conservative-aggressive
tradeoff, and the learning algorithms DAL to solve the learning problems under this paradigm.
More specifically,

1. Learners under the paradigm of learning actively with conservative-aggressive tradeoff
are allowed to obtain the labels through two actions: making prediction and querying
an oracle. Certain cost has to be paid for making wrong prediction or for querying an
oracle. The goal is to build a good model by paying minimal cost for obtaining labels
(predicting and querying).

2. To minimize the cost, the learning algorithm DAL proposed always selects the example
leading to correct (optimal) actions and prefers the action that is expected to cost less
during the learning process. The examples that will likely lead to wrong actions will be
learned during the later stage, as the learner may become more reliable (the probability
is more accurate) and the action taken will become more accurate with more example
being learned.



www.manaraa.com

6.2. FW 83

3. Empirical studies showed that DAL outperforms other learning strategies significantly.
In addition, we showed that well-calibrated classifier can boost the performance of DAL
and the selection method of the starting point used in DAL helps to reduce the total cost.
The work of DAL is submitted to The IEEE International Conference on Data Mining
(ICDM), 2012.

In Chapter 5, we proposed the paradigm of learning actively with minimal/maximal effort,
and the learning algorithms S2C and C2S to solve the learning problems under this paradigm.
More specifically,

1. The paradigm of learning actively with minimal/maximal effort is proposed to study
the relations between learning effort and the performance on achieving goals. Under
this paradigm, the labels of the examples are all provided and learners are allowed to
select examples actively to learn. The goal is to control the learning process by selecting
examples actively such that the learning can be accomplished with minimal effort or
good models can be built fast with maximal effort.

2. For achieving the goal of learning a good model with minimal effort, we propose the
S2C learning algorithm by explicitly applying a human learning theory to supervised
machine learning. The basic idea of S2C is to select those examples that are close to the
current model’s prediction (thus simple) and update the model with them. The complex
examples are left to learn during the later stage.

3. For achieving the goal of learning fast with maximal effort, we proposed the C2S learn-
ing algorithm. C2S repeatedly chooses to learn the example that its prediction is the
most different from the true label during the learning process. Due to the difference, the
example is the most informative for the learner. Thus, it is able to improve the learner
the most, and the learning is expected to be efficient.

4. The empirical studies show that S2C does take less effort in learning a good model;
while C2S learns a model very fast by taking maximal effort. Thus, in real application
the selection of the two learning algorithms depends on the learning goal. The work of
S2C and C2S is published in Advances in Knowledge Discovery and Data Mining, 2010
[61].

6.2 Future Work
We have investigated how to control the learning process, i.e., the sequence of selecting ex-
amples to learn, for achieving different learning goals. The empirical studies have shown that
the proposed learning paradigms and algorithms work well in solving the learning problems.
However, there are still some potential to improve our current work.

Firstly, under all the four learning paradigms we proposed, the misclassification cost of
false positive and false negative are assumed to be equal. In reality, sometimes it is not the
case. In the future, we will adapt our learning paradigm and algorithms so that the learning
problems with uneven misclassification costs can also be solved well.
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Under the paradigm of learning actively with conservative-aggressive tradeoff, when we
make prediction on an example, we assume the true label will be revealed to the learner. In
some real-world applications, only positive (or negative) predictions can reveal the true labels.
For example, the automatic advertisement system will never get the true label (never know if
a website is suitable to advertise) if it does not buy an advertisement slot on a website. The
current algorithm DAL may not be applicable directly in the case, since the learner cannot get
labels for the examples with probability close to 0. We will study this issue in the future work.



www.manaraa.com

Bibliography

[1] D. Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

[2] A. Asuncion and D. Newman. UCI machine learning repository. URL
http://www.ics.uci.edu/ mlearn/mlrepository.html, 2007.

[3] M.F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In Proceedings
of the 23rd international conference on Machine learning, pages 65–72. ACM, 2006.

[4] J. Baldridge and A. Palmer. How well does active learning actually work?: Time-based
evaluation of cost-reduction strategies for language documentation. In Proceedings of
the 2009 Conference on Empirical Methods in Natural Language Processing: Volume
1-Volume 1, pages 296–305. Association for Computational Linguistics, 2009.

[5] Y. Baram, R. El-Yaniv, and K. Luz. Online choice of active learning algorithms. The
Journal of Machine Learning Research, 5:255–291, 2004.

[6] P.L. Bartlett and M.H. Wegkamp. Classification with a reject option using a hinge loss.
The Journal of Machine Learning Research, 9:1823–1840, 2008.

[7] S. Basu, A. Banerjee, and R.J. Mooney. Active semi-supervision for pairwise con-
strained clustering. In Proceedings of the SIAM international conference on data min-
ing, pages 333–344, 2004.

[8] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants. Mach. Learn., 36(1-2):105–139, 1999.

[9] Shai Ben-David, Eyal Kushilevitz, and Yishay Mansour. Online learning versus offline
learning. In EuroCOLT ’95: Proceedings of the Second European Conference on Com-
putational Learning Theory, pages 38–52, London, UK, 1995. Springer-Verlag.

[10] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning. ACM New
York, NY, USA, 2009.

[11] M.J.A. Berry and G.S. Linoff. Data mining techniques. Wiley-India, 2009.

[12] J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In ANNUAL MEETING-ASSOCIATION
FOR COMPUTATIONAL LINGUISTICS, volume 45, page 440, 2007.

85



www.manaraa.com

86 BIBLIOGRAPHY

[13] K. Brinker. Incorporating diversity in active learning with support vector machines. In
In Proceedings of the 20th International Conference on Machine Learning, volume 20,
page 59, 2003.

[14] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Ma-
chine Learning, 15(2):201–221, 1994.

[15] D.A. Cohn, Z. Ghahramani, and M.I. Jordan. Active learning with statistical models.
Arxiv preprint cs/9603104, 1996.

[16] S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm.
Advances in neural information processing systems, 20:2, 2007.
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Appendix

The Formula 3.1 in Chapter 3 is as follows:

C(TP|A
n) =


p(TP)× fn

p(TP)× fn+p(TN )×(1− fn) , if n = 1 and An = {P, fn}

C(TP|A
n−1)× fn

C(TP|An−1)× fn+(1−C(TP|An−1))×(1− fn)
, if n > 1 and An = {P, fn}

A.1 Derivation of Formula 3.1

According to Bayes rule, the left of Formula 3.1 can be transformed as follows.

C(TP|A
n)

=
P(An|TP) × P(TP)

P(An)

=
P(An−1, An|TP) × P(TP)

P(An)

=
P(An−1|TP) × P(TP) × P(An|TP) × P(An−1)

P(An−1) × P(An)

= C(TP|A
n−1) × p(An|TP) ×

p(An−1)
p(An)

(A.1)

The last item in Equation A.1 can be further transformed as follows.
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p(An−1)
p(An)

=
p(An−1)

p(An|TP) × p(TP) + p(An|TN) × p(TN)

=
p(An−1)

p(An−1|TP) × p(TP) × p(An|TP) + p(An−1|TN) × p(TN) × p(An|TN)

=
1

(C(TP|An−1)) × p(An|TP) +C(TN |An−1) × p(An|TN)

As An = (P, fn),

C(TP|A
n)

=
C(TP|An−1) × p(An|TP)

C(TP|An−1) × p(An|TP) + (1 −C(TP|An−1)) × p(An|TN)

=
C(TP|An−1) × fn

C(TP|An−1) × fn + (1 −C(TP|An−1)) × (1 − fn)

Thus, Formula 3.1 holds.

A.2 The Proof of Non-monotonic of Formula 3.1
Proof:

C(TP|A
n) −C(TP|A

n−1)

=
C(TP|An−1) × fn

C(TP|An−1) × fn + (1 −C(TP|An−1)) × (1 − fn)
−C(TP|A

n−1)

=
C(TP|An−1) × fn −C(TP|An−1) × (C(TP|An−1) × fn + (1 −C(TP|An−1)) × (1 − fn))

C(TP|An−1) × fn + (1 −C(TP|An−1)) × (1 − fn)

= C(TP|A
n−1) ×

fn −C(TP|An−1) × fn + (1 −C(TP|An−1)) × (1 − fn)
C(TP|An−1) × fn + (1 −C(TP|An−1)) × (1 − fn)

(A.2)

As C(TP|An−1) ≥ 0 and C(TP|An−1) × fn + (1 −C(TP|An−1)) × (1 − fn) ≥ 0, the update of
confidence is monotonic if fn − C(TP|An−1) × fn + (1 − C(TP|An−1)) × (1 − fn) is guaranteed
to be greater than or equal to 0.

fn −C(TP|A
n−1) × fn + (1 −C(TP|A

n−1)) × (1 − fn)
= (2 × fn − 1) × (1 −C(TP|A

n−1)
(A.3)

As 1 − C(TP|An−1) ≥ 0, if fn ≥ 0.5, C(TP|An) − C(TP|An−1) ≥ 0; otherwise, if fn < 0.5,
C(TP|An) −C(TP|An−1) < 0. Thus, Formula 3.1 is not monotonic.
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